Llama模型家族之Stanford NLP ReFT源代码探索 (四)Pyvene论文学习

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)简介

Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集

Llama模型家族训练奖励模型Reward Model技术及代码实战(三) 使用 TRL 训练奖励模型

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(一)RLHF简介

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(二)RLHF 与RAIF比较

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(三) RLAIF 的工作原理

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(四)RLAIF 优势

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(五)RLAIF 挑战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(七) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(八) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(九) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(十) RLAIF 代码实战

Llama模型家族之拒绝抽样(Rejection Sampling)(一)

Llama模型家族之拒绝抽样(Rejection Sampling)(二)均匀分布简介

Llama模型家族之拒绝抽样(Rejection Sampling)(三)确定缩放常数以优化拒绝抽样方法

Llama模型家族之拒绝抽样(Rejection Sampling)(四) 蒙特卡罗方法在拒绝抽样中的应用:评估线与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(五) 蒙特卡罗算法在拒绝抽样中:均匀分布与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(六) 拒绝抽样中的蒙特卡罗算法:重复过程与接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(七) 优化拒绝抽样:选择高斯分布以减少样本拒绝

Llama模型家族之拒绝抽样(Rejection Sampling)(八) 代码实现

Llama模型家族之拒绝抽样(Rejection Sampling)(九) 强化学习之Rejection Sampling

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(一)ReFT简介

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(二) PyReFT简介

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(三)为 ReFT 微调准备模型及数据集

Llama模型家族之使用 ReFT技术对 Llama-3 进行微调(四) ReFT 微调训练及模型推理

Llama模型家族之Stanford NLP ReFT源代码探索 (一)数据预干预

Llama模型家族之Stanford NLP ReFT源代码探索 (二)interventions.py 代码解析

Llama模型家族之Stanford NLP ReFT源代码探索 (三)reft_model.py代码解析

Llama模型家族之Stanford NLP ReFT源代码探索 (四)Pyvene学习

在这里插入图片描述

Pyvene论文

https://arxiv.org/abs/2403.07809
在这里插入图片描述
这篇论文介绍了一个名为pyvene的Python库,用于在PyTorch模型中进行自定义干预操作。这些干预可以是静态的或包含可训练参数的复杂方案,并且可以通过直观的配置格式轻松实现。论文通过因果抽象和知识定位等解释性分析展示了该库的强大功能,并将其发布到Python Package Index(PyPI)上,提供了代码、文档和教程。这个库为神经模型的干预提供了一种统一而灵活的框架,并支持与其他研究人员分享干预后的模型。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在TinyStories-33M上进行推理时干预(Li等人,2023a)。模型被提示为“从前有一个”,并被要求完成这个故事。我们在每个解码步骤的所有层的MLP输出中添加了一个静态词嵌入(代表“快乐”或“悲伤”),其系数为0.3。提供了pyvene的完整实现。原始生成和干预后的生成都使用了贪婪解码。
在这里插入图片描述
论文实验
本文介绍了使用PyVene库进行模型干预和解释的案例研究。进行了两个实验:

  • 第一个实验是仿照Meng等人(2022)的工作,在GPT-2 XL中寻找事实之间的关联。在这个任务中,首先通过添加高斯噪声来干扰输入嵌入,并然后恢复每个层中的特定激活以识别与结果相关的信息。具体来说,他们恢复了每个标记在每个层中的Transformer块输出、MLP激活和注意力输出。实验结果显示,这种方法可以有效地找到事实之间的关联。

  • 第二个实验是在一个简单的性别代词预测任务中展示干预和探针训练的效果。在这个任务中,使用了一维分布式对齐搜索,试图学习一个表示性别的子空间。他们使用了一个固定的长度为4的模板,其中名字是从一个词汇表中随机选择的,包括47个男性常用的名字和10个女性常用的名字,以及相应的性别代词作为输出标记。实验结果显示,可训练的干预可以在各个层和位置上找到更稀疏的性别表示,而线性探针则几乎在所有组件上都实现了100%的分类准确率。这表明即使在不相关的因果关系中,探针也可能实现很高的性能。

  • 这些实验展示了PyVene库在模型干预和解释方面的强大功能。

论文总结

本文介绍了一个名为pyvene的Python库,支持干预研究在神经模型上的应用。该库具有以下优点:

  • 支持自定义干预类型和不同类型的模型架构。
  • 支持复杂的干预方案,并且可以共享干预后的模型。
  • 可以通过在线模型中心(如HuggingFace)与他人分享干预后的模型。
  • 提供了灵活的方法来解释和改进模型。

未来展望

提出了两个主要的研究方向:

  • 扩展默认的干预类型和模型类型。虽然pyvene是可扩展的,但拥有更多的内置类型可以帮助 更容易地吸引新用户。
  • pyvene旨在支持复杂的干预方案,但这会导致计算效率低下。随着语言模型越来越大, 希望调查如何通过多节点和多GPU训练来提高干预效率。

对模型内部状态的干预是人工智能许多领域的基本操作,包括模型编辑、转向、鲁棒性和可解释性。为了促进这种研究,我们引入了pyrene,这是一个开源Python库,支持对一系列不同PyTorch模块的可定制干预。pyrvene以直观的配置格式支持复杂的干预方案,其干预可以是静态的或包括可训练的参数。

论文 Inference-Time Intervention

Inference-Time Intervention

在这里插入图片描述
这篇论文介绍了一种名为“推理时间干预(ITI)”的技术,旨在提高大型语言模型(LLM)的“实际性”。该技术通过在推断过程中改变模型激活,在有限数量的注意力头中沿着一组方向进行调整,从而显著提高了LLAMA模型在TruthfulQA基准测试上的表现。论文使用了一个名为Alpaca的指令微调LLAMA,并将ITI应用于它,将其实际性从32.5%提高到65.1%。此外,作者还发现了一个实际性与帮助性之间的权衡,并展示了如何通过调整干预强度来平衡它们。ITI是一种最小侵入性和计算上经济实惠的技术,而且数据效率高:尽管需要大量的注释才能使RLHF等方法生效,但ITI仅使用几百个示例即可定位真实的方向。论文的研究结果表明,即使表面上产生谎言,LLM可能也具有内部表示某件事可能是实际的的能力。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

GPT 自回归语言模型架构、数学原理及内幕-简介

GPT 自回归语言模型架构、数学原理及内幕-简介

基于 Transformer 的 Rasa Internals 解密之 Retrieval Model 剖析-简介

基于 Transformer 的 Rasa Internals 解密之 Retrieval Model 剖析-简介

Transformer语言模型架构、数学原理及内幕机制-简介

Transformer语言模型架构、数学原理及内幕机制-简介

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/345590.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【嵌入式】波特率9600,发送8个字节需要多少时间,如何计算?

问题: 波特率9600,发送 01 03 00 00 00 04 44 09 (8字节) 需要多少时间,如何计算? 在计算发送数据的时间时,首先要考虑波特率以及每个字符的数据格式。对于波特率9600和标准的UART数据格式(1个起始位&…

彩虹易支付最新版源码

源码简介 彩虹易支付最新版源码,更新时间为5.1号 2024/05/01: 1.更换全新的手机版支付页面风格 2.聚合收款码支持填写备注 3.后台支付统计新增利润、代付统计 4.删除结算记录支持直接退回商户金额 安装环境 1.PHP版本>7.4 2.Mysql数据库 安装教…

C++ Qt实现http url启动本地应用程序

更多Qt文章,请访问《深入浅出C++ Qt开发技术专栏》:https://blog.csdn.net/yao_hou/category_9276099.html 文章目录 1、注册自定义协议2、编写web页面3、编写C++应用程序我们在使用腾讯会议时经常会通过http链接打开本地的腾讯会议,例如下图: 打开会议发起人给的链接,会出…

⾃动化批量管理-Ansible

目录 一、ansible 简介 自动化工具选择 (了解)​编辑 1、ansible 是什么? 2、ansible 特点 3、ansible 架构图 二、ansible 任务执行 1、ansible 任务执行模式 2、ansible 执行流程 3、ansible 命令执行过程 三、ansible 配置详解 …

【iOS】UI学习——登陆界面案例、照片墙案例

文章目录 登陆界面案例照片墙案例 登陆界面案例 这里通过一个登陆界面来复习一下前面学习的内容。 先在接口部分定义两个UILabel、两个UITextField、两个UIButton按键&#xff1a; #import <UIKit/UIKit.h>interface ViewController : UIViewController {UILabel* _lb…

基于AT89C51单片机的红外防盗报警器设计

第一章 绪论1.1 选题背景 随着社会科学的不断进步和发展,人们生活水平得到很大的提高,对个人私有财产的保护越来越重视,因而对于防盗的措施提出了更高的要求。本设计就是为了满足现代生活防盗的需要而设计的应用于家庭、车库、仓库和保险柜等处进行防盗监控的无线防盗报警装…

【RAG入门教程03】Langchian框架-文档加载

Langchain 使用文档加载器从各种来源获取信息并准备处理。这些加载器充当数据连接器&#xff0c;获取信息并将其转换为 Langchain 可以理解的格式。 LangChain 中有几十个文档加载器&#xff0c;可以在这查看https://python.langchain.com/v0.2/docs/integrations/document_lo…

Hive日志介绍

日志描述 日志路径&#xff1a;Hive相关日志的默认存储路径为“/var/log/Bigdata/hive/角色名”&#xff0c;Hive1相关日志的默认存储路径为“/var/log/Bigdata/hive1/角色名”&#xff0c;以此类推。 HiveServer&#xff1a;“/var/log/Bigdata/hive/hiveserver”&#xff0…

【算法】常用排序算法(插入排序、希尔排序、堆排序、选择排序、冒泡排序、快速排序、归并排序、计数排序)超详细

排序算法是数据结构相关知识中非常重要的一节&#xff0c;相信很多小伙伴对这部分知识一知半解。那么接下来&#xff0c;小编就要带领大家一起来进行对排序算法的深入剖析学习&#xff0c;希望本篇文章能够使你有所收获&#xff01; 一.常见的排序算法 排序算法有很多种&#…

‘AndroidStudio工具平台’尝试运行‘Android原生项目’

AndroidStudio工具平台 (内嵌Intelli IDEA集成环境) /Users/haijunyan/Library/Android/sdk 配置环境变量: #adb命令&#xff0c;安装APK查看连接设备 platform-tools #emulator命令&#xff0c;通过命令创建模拟器 tools #用NDK框架搭建的项目&#xff0c;用到下面的命令编译 …

【Oracle】Oracle导入导出dmp文件

文章目录 前言一、什么是dmp&#xff1f;二、imp/impdp、exp/expdp对比及示例1.区别2.imp/impdp对比及示例a. impb. impbp 3.exp/expdp对比及示例a. expb.expdp 3.其他事项 三、执行导入导出前置条件1.创建角色并授权2.创建目录映射 前言 在工作中&#xff0c;经常会遇到需要备…

Serif Affinity 2.5 (macOS, Windows) - 专业创意软件

Serif Affinity 2.5 (macOS, Windows) - 专业创意软件 Affinity Designer 2, Affinity Photo 2, Affinity Publisher 2 请访问原文链接&#xff1a;Serif Affinity 2.5 (macOS, Windows) - 专业创意软件&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主…

【数据结构(邓俊辉)学习笔记】图06——最小支撑树

文章目录 0. 概述1. 支撑树2. 最小支撑树3. 歧义性4. 蛮力算法5. Prim算法5.1 割与极短跨越边5.2 贪心迭代5.3 实例5.4 实现5.5 复杂度 0. 概述 学习下最小支撑树和prim算法。 1. 支撑树 最小的连通图是树。 连通图G的某一无环连通子图T若覆盖G中所有的顶点&#xff0c;则称…

【算法小记】深度学习——时间序列数据分析 Time series Data Analysis

在本篇博客中将简单介绍常见的几种循环神经网络和一维卷积神经网络&#xff0c;并使用一些简答的数据进行拟合分析。本文相对适合刚入门的同学&#xff0c;同时也作为自己过去一段时间学习的总结和记录&#xff0c;现在神经网络框架已经非常完善的支持了很多常见和有效的深度学…

Channels无法使用ASGI问题

Django Channels是一个基于Django的扩展, 用于处理WebSockets, 长轮询和触发器事件等实时应用程序. 它允许Django处理异步请求, 并提供了与其他WebSockets库集成的功能.当我们在Django Channels中使用ASGI_APPLICATION设置时, 我们可以指定一个新的ASGI应用程序来处理ASGI请求.…

Linux基础I/O

一&#xff0c;系统文件I/O 写文件: #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <string.h> int main() {umask(0);int fd open("myfile", O_WRO…

Docker高级篇之Docker微服务实战

文章目录 1. 构建一个简单的微服务项目2. 编写Dockerfile发布微服务部署到docker容器 1. 构建一个简单的微服务项目 创建一个SpringBoot项目 创建一个Controller RestController public class OrderController {Value("${server.port")private String port;Reques…

C语言:双链表

一、什么是双链表&#xff1f; 双链表&#xff0c;顾名思义&#xff0c;是一种每个节点都包含两个链接的链表&#xff1a;一个指向下一个节点&#xff0c;另一个指向前一个节点。这种结构使得双链表在遍历、插入和删除操作上都表现出色。与单链表相比&#xff0c;双链表不仅可以…

Rust 实战丨SSE(Server-Sent Events)

&#x1f4cc; SSE&#xff08;Server-Sent Events&#xff09;是一种允许服务器向客户端浏览器推送信息的技术。它是 HTML5 的一部分&#xff0c;专门用于建立一个单向的从服务器到客户端的通信连接。SSE的使用场景非常广泛&#xff0c;包括实时消息推送、实时通知更新等。 S…

C++中的priority_queue和deque以及适配器

C中的priority_queue和deque 一丶 priority_queue1.1 priority_queue的介绍1.2 priority_queue的使用1.3 priority_queue的模拟实现 二丶 deque2.1 deque的简单介绍2.2 deque的缺陷2.3 为什么要选择deque作为stack和queue的迭代器 三丶 容器适配器3.1 什么是适配器3.2 STL标准库…