AI-知识库搭建(一)腾讯云向量数据库使用

一、AI知识库

将已知的问答知识,问题和答案转变成向量存储在向量数据库,在查找答案时,输入问题,将问题向量化,匹配向量库的问题,将向量相似度最高的问题筛选出来,将答案提交。

二、腾讯云向量数据库

向量数据库_大模型知识库_向量数据存储_向量数据检索- 腾讯云

腾讯云向量数据库(Tencent Cloud VectorDB)是一款全托管的自研企业级分布式数据库服务,专用于存储、检索、分析多维向量数据。该数据库支持多种索引类型和相似度计算方法,单索引支持千亿级向量规模,可支持百万级 QPS 及毫秒级查询延迟。腾讯云向量数据库不仅能为大模型提供外部知识库,提高大模型回答的准确性,还可广泛应用于推荐系统、自然语言处理等 AI 领域。

三、使用教程(java)

1、项目引用依赖
        <!--腾讯云向量数据库使用--><dependency><groupId>com.tencent.tcvectordb</groupId><artifactId>vectordatabase-sdk-java</artifactId><version>1.2.0</version></dependency>
2、application.properties 配置
#向量数据库地址-购买服务器后,获取到外网访问域名,账号密码
vectordb.url=${VECTORDB_URL:http://xxxxxxxxx.com:10000}
vectordb.user=${VECTORDB_USER:root}
vectordb.key=${VECTORDB_KEY:123456}
3、初始化客户端
import com.tencent.tcvectordb.client.VectorDBClient;
import com.tencent.tcvectordb.model.param.database.ConnectParam;
import com.tencent.tcvectordb.model.param.enums.ReadConsistencyEnum;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.stereotype.Component;@Component
public class InitVectorClient {@Value("${vectordb.url:}")private String vdbUrl;@Value("${vectordb.user:}")private String vdbUser;@Value("${vectordb.key:}")private String  vdbKey;@Beanpublic VectorDBClient vdbClient(){ConnectParam connectParam = ConnectParam.newBuilder().withUrl(vdbUrl).withUsername(vdbUser).withKey(vdbKey).withTimeout(30).build();VectorDBClient client = new VectorDBClient(connectParam, ReadConsistencyEnum.EVENTUAL_CONSISTENCY);return client;}}
4、创建表结构

这里使用HTTP的方式

curl --location --request POST 'xxxxx.com:10000/database/create' \
--header 'Authorization: Bearer account=root&api_key=123456' \
--header 'Content-Type: application/json' \
--data-raw '{"database": "db_xiaosi"
}'curl --location --request POST 'xxxxx.com:10000/collection/create' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer account=root&api_key=123456' \
--data-raw '{"database": "db_xiaosi","collection": "t_bug","replicaNum": 0,"shardNum": 1,"description": "BUG表关键字向量","indexes": [{"fieldName": "id","fieldType": "string","indexType": "primaryKey"},{"fieldName": "bug_name","fieldType": "string","indexType": "filter"},{"fieldName": "is_deleted","fieldType": "uint64","indexType": "filter"},{"fieldName": "vector","fieldType": "vector","indexType": "HNSW","dimension": 1536,"metricType": "COSINE","params": {"M": 16,"efConstruction": 200}}]
}'
5、封装http请求类
package com.ikscrm.platform.api.manager.bug;import cn.hutool.core.date.DateUtil;
import com.ikscrm.platform.api.dao.vector.BugVector;
import com.tencent.tcvectordb.client.VectorDBClient;
import com.tencent.tcvectordb.model.Collection;
import com.tencent.tcvectordb.model.Database;
import com.tencent.tcvectordb.model.DocField;
import com.tencent.tcvectordb.model.Document;
import com.tencent.tcvectordb.model.param.dml.*;
import com.tencent.tcvectordb.model.param.entity.AffectRes;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Component;import javax.annotation.Resource;
import java.util.ArrayList;
import java.util.List;/*** 向量数据库能力* 接口文档 https://cloud.tencent.com/document/product/1709/97768* 错误码 https://cloud.tencent.com/document/product/1709/104047* @Date 2024/3/6 13:49*/
@Component
@Slf4j
public class VectorManager {@Resourceprivate VectorDBClient vdbClient;/*** 根据向量查询相似数据。** @param dbName    数据库名称* @param tableName 表名称* @param vector    向量* @return 返回更新操作影响的记录数* @throws RuntimeException 如果更新过程中发生业务异常*/public List<BugVector> findBugList(String dbName, String tableName, List<Double> vector) {List<BugVector> resultList = new ArrayList<>();Database database = vdbClient.database(dbName);Collection collection = database.describeCollection(tableName);Filter filter = new Filter("is_deleted=0");//这部分的算法需要深入了解SearchByVectorParam searchByVectorParam = SearchByVectorParam.newBuilder().addVector(vector)// 若使用 HNSW 索引,则需要指定参数ef,ef越大,召回率越高,但也会影响检索速度.withParams(new HNSWSearchParams(15))// 指定 Top K 的 K 值.withLimit(20)// 过滤获取到结果.withFilter(filter).build();// 输出相似性检索结果,检索结果为二维数组,每一位为一组返回结果,分别对应 search 时指定的多个向量List<List<Document>> svDocs = collection.search(searchByVectorParam);for (List<Document> docs : svDocs) {for (Document doc : docs) {BugVector build = new BugVector();build.setId(doc.getId());build.setScore(doc.getScore());build.setVector(doc.getVector());for (DocField field : doc.getDocFields()) {if (field.getName().equals("bug_name")) {build.setBugName(field.getStringValue());}if (field.getName().equals("bug_title")) {build.setBugTitle(field.getStringValue());}if (field.getName().equals("is_deleted")) {build.setIsDeleted(Integer.valueOf(field.getStringValue()));}if (field.getName().equals("create_time")) {build.setCreateTime(field.getStringValue());}if (field.getName().equals("update_time")) {build.setUpdateTime(field.getStringValue());}}resultList.add(build);}}return resultList;}/*** 将问题向量列表插入到指定的数据库和集合中。** @param dbName    数据库名称,指定要操作的数据库。* @param tableName 集合名称,即数据表名称,指定要插入数据的表。* @param list      要插入的数据列表,列表中的每个元素都是TaskVector类型,包含了问题的向量信息及其他相关字段。*/public Long insertBugList(String dbName, String tableName, List<BugVector> list) {try {Database database = vdbClient.database(dbName);Collection collection = database.describeCollection(tableName);List<Document> documentList = new ArrayList<>();list.forEach(item -> {documentList.add(Document.newBuilder().withId(item.getId()).withVector(item.getVector()).addDocField(new DocField("bug_name", item.getBugName())).addDocField(new DocField("bug_title", item.getBugTitle())).addDocField(new DocField("is_deleted", item.getIsDeleted())).addDocField(new DocField("create_time", DateUtil.now())).addDocField(new DocField("update_time", DateUtil.now())).build());});InsertParam insertParam = InsertParam.newBuilder().addAllDocument(documentList).build();
//       upsert 实际数据会有延迟AffectRes upsert = collection.upsert(insertParam);log.info("向量列表插入数量:{},完成:{}", list.size(), upsert.getAffectedCount());return upsert.getAffectedCount();} catch (Exception ex) {log.error("向量列表插入异常", ex);throw new RuntimeException("向量列表插入异常" + ex.getMessage());}}
}

腾讯云的向量库使用方式基本就是这样着,在这里简单的使用到了他的插入和向量查询功能。下一篇讲解GPT的如何与向量数据库结合使用

AI-知识库搭建(二)GPT-Embedding模式使用-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/346502.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nvidia/算能 +FPGA+AI大算力边缘计算盒子:医疗健康智能服务

作为国产运动医学的领导者&#xff0c;致力于提供运动医学的整体临床解决方案&#xff0c;公司坐落于北京经济技术开发区。应用于肩关节、膝关节、足/踝关节、髋关节、肘关节、手/腕关节的运动医学设备、植入物和手术器械共计300多个品规通过NMPA的批准&#xff0c;临床应用于国…

AJAX 跨域

这里写目录标题 同源策略JSONPJSONP 是怎么工作的JSONP 的使用原生JSONP实践CORS 同源策略 同源&#xff1a; 协议、域名、端口号 必须完全相同、 当然网页的URL和AJAX请求的目标资源的URL两者之间的协议、域名、端口号必须完全相同。 AJAX是默认遵循同源策略的&#xff0c;不…

AI漫画赛道,10分钟快速赚钱秘诀!

AI百宝箱-Chatgpt4.0、Midjourney绘画、人工智能绘画、AI换脸、AI图片放大、AI图片分析、AI图片融合https://h5.cxyhub.com/?invitationhmeEo7 先使用ChatGPT写小说 ComicAI 漫画小说生成网站 1. 创建小说漫画 2. 故事模板 3. 生成角色形…

【Linux】ls命令

这个命令主要是用于显示指定工作目录下之内容&#xff08;列出目前工作目录所含的文件及子目录)。 掌握几个重点的常使用的就可以&#xff1a; ls -l # 以长格式显示当前目录中的文件和目录 ls -a # 显示当前目录中的所有文件和目录&am…

【C++题解】1457 - 子数整除

问题&#xff1a;1457 - 子数整除 类型&#xff1a;循环应用 题目描述&#xff1a; 于一个五位数 abcde &#xff0c;可将其拆分为三个子数&#xff1a; sub1abc sub2bcd sub3cde 例如&#xff0c;五位数20207 可以拆分成sub1202 sub2020 (也就是 20) sub3207 现在给定一个正…

Soap - ScriptableObject 架构模式

厌倦了意大利面代码吗?🍝 Soap提供了无代码解决方案来解决常见的意大利面代码问题,让您可以: 在场景和组件之间共享变量 以简单而强大的方式发送和接收事件 自动将UI和组件绑定到数据 一键保存关键变量 让游戏开发更容易 🎲 Soap使得解耦您的代码变得简单而无缝,使您能…

助力高考,一组彩色的文字

1、获取文本内容 首先&#xff0c;获取每个<div>元素的文本内容&#xff0c;并清空其内部HTML&#xff08;innerHTML ""&#xff09;。 2、创建<span>元素 然后&#xff0c;它遍历文本的每个字符&#xff0c;为每个字符创建一个新的<span>元素…

linux网络服务“PXE网络批量装机和Kickstart全自动化安装”

PXE网络批量装机 pxe自动装机&#xff1a; 服务端和客户端 pxe c/s 模式&#xff1a;允许客户端通过网络从远程服务器&#xff08;服务端&#xff09;下载引导镜像&#xff0c;加载安装文件&#xff0c;实现自动化安装操作系统。 无人值守 :安装选项不需要人为干预&#xf…

STM32智能家居项目esp8266上云OneNet【附源码+详细教程】

目录 一、硬件选材 二、OneNet使用教程 三、代码修改教程 四、添加数据流方法 五、项目工程&#xff08;源码元件清单教程&#xff09; 小白也能做&#xff0c;项目工程在后文可下载。 一、硬件选材 二、OneNet使用教程 拿到代码后肯定是连不上网的&#xff0c;因为源码…

【漏洞复现】宏景eHR openFile.jsp 任意文件读取漏洞

0x01 产品简介 宏景eHR人力资源管理软件是一款人力资源管理与数字化应用相融合&#xff0c;满足动态化、协同化、流程化、战略化需求的软件。 0x02 漏洞概述 宏景eHR openFile.jsp 接口处存在任意文件读取漏洞&#xff0c;未经身份验证攻击者可通过该漏洞读取系统重要文件(如…

第18篇 Intel FPGA Monitor Program的使用<一>

Q&#xff1a;Intel FPGA Monitor Program开发工具可以支持Terasic的FPGA开发板使用吗&#xff1f; A&#xff1a;Intel FPGA Monitor Program 是Intel提供的适用于 ARM* Cortex*-A9 处理器和 Nios II 处理器的完整软件开发环境&#xff0c;它包括编译工具以及完整的调试功能&…

【双指针算法】原地处理数组的双指针算法思想

移动零 题目中已经明确表示不能重新创建数组来辅助解题&#xff0c;因此只能对数组进行原地操作&#xff0c;即双指针算法思想。 算法思想&#xff1a; 题目要求我们将非0元素放在数组的左边&#xff0c;0元素放在数组的右边&#xff0c;同时保持非0元素的相对位置。 这种对…

【优选算法】详解target类求和问题(附总结)

目录 1.两数求和 题目&#xff1a; 算法思路&#xff1a; 代码&#xff1a; 2.&#xff01;&#xff01;&#xff01;三数之和 题目 算法思路&#xff1a; 代码&#xff1a; 3.四数字和 题目&#xff1a; 算法思路&#xff1a; 代码&#xff1a; 总结&易错点&…

csdn上传图片失败解决办法

今天下午写笔记&#xff0c;上传图片的时候总是出现图片上传不成功。查询了下解决方案&#xff1a; C:\Windows\System32\drivers\etc &#xff0c;使用管理员打开hosts文件加入&#xff1a; 49.7.22.7 csdn-img-blog.oss-cn-beijing.aliyuncs.com保存之后&#xff0c;&#x…

Mac怎么读取内存卡 Mac如何格式化内存卡

在今天的数字化时代&#xff0c;内存卡已经成为了我们生活中不可或缺的一部分。对于Mac电脑用户而言&#xff0c;正确地读取和管理内存卡中的数据至关重要。下面我们来看看Mac怎么读取内存卡&#xff0c;Mac如何格式化内存卡的相关内容。 一、Mac怎么读取内存卡 苹果电脑在读…

Nacos长轮询底层是怎么实现的?

点击下方“JavaEdge”&#xff0c;选择“设为星标” 第一时间关注技术干货&#xff01; 免责声明~ 任何文章不要过度深思&#xff01; 万事万物都经不起审视&#xff0c;因为世上没有同样的成长环境&#xff0c;也没有同样的认知水平&#xff0c;更「没有适用于所有人的解决方案…

Redis到底支不支持事务?

文章目录 一、概述二、使用1、正常执行&#xff1a;2、主动放弃事务3、全部回滚:4、部分支持事务:5、WATCH: 三、事务三阶段四、小结 redis是支持事务的&#xff0c;但是它与传统的关系型数据库中的事务是有所不同的 一、概述 概念: 可以一次执行多个命令&#xff0c;本质是一…

蓝牙安全入门——两道CTF题目复现

文章目录 蓝牙安全入门题目 low_energy_crypto获取私钥解密 题目 蓝牙钥匙的春天配对过程配对方法密钥分发数据加密安全漏洞和保护实际应用实际应用 蓝牙安全入门 &#x1f680;&#x1f680;最近一直对车联网比较感兴趣&#xff0c;但是面试官说我有些技术栈缺失&#xff0c;所…

CleanMyMac2024最新免费电脑Mac系统优化工具

大家好&#xff0c;我是你们的好朋友——软件评测专家&#xff0c;同时也是一名技术博主。今天我要给大家种草一个超级实用的Mac优化工具——CleanMyMac&#xff01; 作为一个长期使用macOS的用户&#xff0c;我深知系统运行时间长了&#xff0c;缓存文件、日志、临时文件等都会…

【数据结构与算法 经典例题】括号匹配问题

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《数据结构与算法 经典例题》C语言 期待您的关注 ​​ 目录 一、问题描述 二、解题思路 &#x1f343;破解之道 &#x1f343;…