C++笔记:模板

模板

为什么要学习模板编程

        在学习模板之前,一定要有算法及数据结构的基础,以及重载,封装,多态,继承的基础知识,不然会出现看不懂,或者学会了没办法使用。

        为什么C++会有模板,来看下面的代码。

        add()第一版
#include <iostream>
#include <string>
using namespace std;int add(int a, int b) {return a + b;
}double add(double a, double b) {return a + b;
}string add(string a, string b) {return a + b;
}int main() {cout << add(1, 2) << endl;cout << add(2.1, 3.3) << endl;string a = "hello", b = "world";cout << add(a, b) << endl;return 0;
}

        当我们使用add函数时,不同的类型要去重载实现不同参数的add函数,那么有多少种相同类型进行相加,那么我们就要重载实现多少种add函数,那么就对于我们程序员来说这种方法就很麻烦,那么模板编程就可以帮我们避免这种麻烦。来看下面这段代码:

        add()第二版
#include <iostream>
#include <string>
using namespace std;template<typename T>
T add(T a, T b) {return a + b;
}int main() {cout << add(1, 2) << endl;cout << add(2.1, 3.3) << endl;string a = "hello", b = "world";cout << add(a, b) << endl;return 0;
}

        可以发现第一版我实现了3种add函数,而第二版我只实现了一种add函数,直接少写了很多重复的逻辑代码,这就是为什么需要学习模板编程。

模板编程(泛型编程)

程序 = 算法 + 数据结构

数据结构:可以存储任意类型

算法:能够操作存储任意类型数据的数据结构

        例如vector容器它是能够存储任意类型的顺序表,sort函数可以对任意类型的顺序表进行排序并且还可以自定义排序规则,而这两个例子都是通过模板编程进行实现。

        模板对于我们程序员来说是一种工具,而这种工具我们可以在程序设计中把任意类型进行抽象出来。

模板函数

        例如文章开头的例子,我不知道add中需要传入的参数是什么,那么也不知道具体的返回值是什么,那么我们就需要利用模板编程进行抽象出来一个模板函数,进行可以对任意类型进行处理的函数。

        那么我拿第二版的add函数进行继续探索模板函数,现在我有一个需求是

cout << add(1, 1.2) << endl

        传入的参数是不同的,那么我该如何设计,如下:

#include <iostream>
#include <string>
using namespace std;//template是用来引入模板参数的关键字
//typename先理解为定义一个任意类型的变量
template<typename T, typename U>
T add(T a, U b) {return a + b;
}int main() {cout << add(1, 2) << endl;cout << add(2.1, 3.3) << endl;string a = "hello", b = "world";cout << add(a, b) << endl;cout << add(1, 1.2) << endl;// 结果 2cout << add(1.2, 1) << endl;// 结果 2.2return 0;
}

        那我就加两个模板任意参数就可以了,这样就可以不发生报错了,但是又有一个问题了,我,我把add(1, 1.2)中的参数进行调换了位置,他的结果会不一样,因为我的返回值是T类型,那么对应的就是第一个参数的类型,如果第一个参数是1那么返回值类型就是int,第一个参数是1.2那么返回值类型就是float。

        那么这里会引入一个新的关键字decltype

        decltype:

        这里我们用到的是第二点,也就是判断复杂表达式的结果是什么类型。

#include <iostream>
#include <string>
using namespace std;//template是用来引入模板参数的关键字
//typename先理解为定义一个任意类型的变量
template<typename T, typename U>
//T和U是任意类型
//不管什么类型都有一个默认构造
decltype(T() + U()) add(T a, U b) {return a + b;
}int main() {//int也有可以当作类来使用//所以任意类型都有构造函数int num = int(1);cout << add(1, 2) << endl;cout << add(2.1, 3.3) << endl;string a = "hello", b = "world";cout << add(a, b) << endl;cout << add(1, 1.2) << endl;cout << add(1.2, 1) << endl;return 0;
}

        问题又来了,如果我传入T类型,而这个T类型默认构造被删除了,那这个代码是会发生报错的,那么如何去解决呢,那么这里又引出了一个新的概念返回值后置:

        这里会用到一个新的关键字auto

        

#include <iostream>
#include <string>
using namespace std;//template是用来引入模板参数的关键字
//typename先理解为定义一个任意类型的变量
template<typename T, typename U>
//在原来返回值的位置写一个auto关键字
//auto是用来推到后置返回值的类型
//因为-> 在参数列表后面,根据代码的执行顺序,那么a和b就可以进行使用
//所以可以用decltype进行判断a + b的返回类型
//然后传给auto进行推断,最后确定返回值类型
auto add(T a, U b) -> decltype(a + b){return a + b;
}int main() {//int也有可以当作类来使用//所以任意类型都有构造函数int num = int(1);cout << add(1, 2) << endl;cout << add(2.1, 3.3) << endl;string a = "hello", b = "world";cout << add(a, b) << endl;cout << add(1, 1.2) << endl;cout << add(1.2, 1) << endl;return 0;
}
        模板类:

        在下面这份代码中,我利用模板实现了一个模板类,而这个模板类是一个简单对于数组的实现:

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;//利用模板创建一个模板类
template<typename T>
class A {
public : A(int n = 10) : n(n) {this->arr = new T[n];}T &operator[](int ind) {if (ind < 0 || ind > n) return __end;return arr[ind];}void rand_arr() {for (int i = 0; i < n; i++) {int x = rand() % 100;arr[i] = x - (T)x / 10;}return ;}~A() {delete arr;}//在声明友元函数时,也要加上模板的关键字引入和模板参数template<typename U>friend ostream &operator<<(ostream &out, const A<U> &obj);
private :T *arr;int n;T __end;
};
//重载输出时也需要利用到模板编程
template<typename T>
ostream &operator<<(ostream &out, const A<T> &obj) {for (int i = 0; i < obj.n; i++) {cout << obj.arr[i] << " ";}return out;
}int main() {srand(time(0));//通过模板类创建对象时//需要确定模板类型中的模板参数类型A<int> a;a.rand_arr();A<double> b;b.rand_arr();cout << a << endl;cout << b << endl;return 0;
}

        认识了大概的模板类进行如何使用我们继续往下探索:

        模板特化与偏特化

        模板特化

        现在假如我对于add函数进行使用时,我需要对int类型特殊处理,也就是返回值结果需要加2,那么就需要用到模板函数的特化:

#include <iostream>
#include <string>
using namespace std;//template是用来引入模板参数的关键字
//typename先理解为定义一个任意类型的变量
template<typename T, typename U>
//在原来返回值的位置写一个auto关键字
//auto是用来推到后置返回值的类型
//因为-> 在参数列表后面,根据代码的执行顺序,那么a和b就可以进行使用
//所以可以用decltype进行判断a + b的返回类型
//然后传给auto进行推断,最后确定返回值类型
auto add(T a, U b) -> decltype(a + b){return a + b;
}//由于是特化,那么我们就确定了参数
//就不需要传入模板参数了,但是也得需要template关键字引入
template<> 
int add(int a, int b) {return a + b + 2;  
}int main() {//int也有可以当作类来使用//所以任意类型都有构造函数int num = int(1);cout << add(1, 2) << endl; //那么这里的结果应该是 1 + 2 + 2 = 5cout << add(2.1, 3.3) << endl;string a = "hello", b = "world";cout << add(a, b) << endl;cout << add(1, 1.2) << endl;cout << add(1.2, 1) << endl;return 0;
}
        模板偏特化

        如下我传入的参数是指针类型时,我该如何进行处理

int a = 10, b = 20;
cout << add(&a, &b) << endl;

        这里我们就会用到偏特化:

#include <iostream>
#include <string>
using namespace std;//template是用来引入模板参数的关键字
//typename先理解为定义一个任意类型的变量
template<typename T, typename U>
//在原来返回值的位置写一个auto关键字
//auto是用来推到后置返回值的类型
//因为-> 在参数列表后面,根据代码的执行顺序,那么a和b就可以进行使用
//所以可以用decltype进行判断a + b的返回类型
//然后传给auto进行推断,最后确定返回值类型
auto add(T a, U b) -> decltype(a + b){return a + b;
}//由于是特化,那么我们就确定了参数
//就不需要传入模板参数了,但是也得需要template关键字引入
template<> 
int add(int a, int b) {return a + b + 2;  
}//模板偏特化版本
//当传入的参数是指针类型时的版本
template<typename T, typename U>
auto add(T *a, U *b) -> decltype(*a + *b) {cout << "this is piantehua" << endl;return *a + *b;
}int main() {//int也有可以当作类来使用//所以任意类型都有构造函数int num = int(1);cout << add(1, 2) << endl; //那么这里的结果应该是 1 + 2 + 2 = 5cout << add(2.1, 3.3) << endl;string a = "hello", b = "world";cout << add(a, b) << endl;cout << add(1, 1.2) << endl;cout << add(1.2, 1) << endl;int c = 10, d = 20;cout << add(&c, &d) << endl;return 0;
}
可变参数模板
typename

现在来说一下typename的作用:

typename的作用就是,声明后面的表达式是一个类型。

        可变参模板函数        

        现在我要实现一个函数叫做print,他可以打印所有的参数,并且参数的个数是任意的:
        

#include<iostream>
using namespace std;
//递归出口,打印最后一个参数
//也就是偏特化版本,只有一个参数时的print
template<typename T>
void print(T a) {cout << a << endl;return ;
}//一个模板参数代表当前层数的参数的类型, ARGS代表后续跟着的参数的类型
template<typename T, typename ...ARGS>
void print(T a, ARGS ...args) {//打印当前层的的第一个参数cout << a << " ";//递归到下一层,去打印下一个参数print(args...);return ;
}int main() {int a = 10;print(a, 12.3, "hello", '0', "gg");return 0;
}

        那么最终只有一个参数时,会调用的print的偏特化版本只有一个参数时,进行递归结束。

        可变参模板类

        下面实现一个类,这个类模板的参数个数是不定的,并且演示了如何获取每一层中分别对应的变参类型:

#include<iostream>
using namespace std;//template引入当前类型中的第一个参数T
//然后引入变参列表ARGS
template<typename T, typename ...ARGS>
class ARG {
public ://将T类型重命名为getTtypedef T getT;//将下个一个类重命名为next_Ttypedef ARG<ARGS...> next_T;
};
//类的递归出口,只有一个参数时的模板类
template<typename T> 
class ARG<T> {
public :typedef T getT;
};int main() {//取到第一层中的intARG<int, double, long long, float>::getT a;//取到第二层中的doubleARG<int, double, long long, float>::next_T::getT b;//取到第三层中的long longARG<int, double, long long, float>::next_T::next_T::getT c;//取到第四层中的floatARG<int, double, long long, float>::next_T::next_T::next_T::getT e;cout << sizeof(a) << endl;cout << sizeof(b) << endl;cout << sizeof(c) << endl;cout << sizeof(e) << endl;return 0;
}

        下面通过上面的代码,在提出一个需求:

        之前我取最后一层的类型需要这样去取,那如果我有10个,100个参数,就需要去写,

n - 1个next_T吗,所以我需要进行迭代更新一下:

ARG<int, double, float, char>::next_T::next_T::next_T::getT e;

        改完之后:

ARG<3,int, double, float, char>::getT e;

        数字3就代表我要取的对应的类型,那么如何实现看下面代码:

#include<iostream>
using namespace std;//基础模板声明
//因为进行偏特化处理时或者特化处理时需要基础模板
template<int n, typename ...ARGS>
class ARG_imag;//偏特化模板递归
template<int n, typename T, typename ...Rest>
class ARG_imag<n, T, Rest...>{
public ://进行递归,直到找到需要的层数typedef typename ARG_imag<n - 1, Rest...>::thisT thisT;
};//偏特化模板递归出口
//当n等于0时,说明到达需求层数,进行递归结束
template<typename T, typename ...Rest>  
class ARG_imag<0, T, Rest...> {
public :typedef T thisT;
};//进行封装
//用户调用的是ARG
template<int n, typename ...ARGS>
class ARG {
public :typedef typename ARG_imag<n, ARGS...>::thisT getT;
};int main() {//取到第一层中的intARG<0, int, double, float, char>::getT a = 123;//取到第二层中的doubleARG<1, int, double, float, char>::getT b = 12.3;//取到第三层中的floatARG<2, int, double, float, char>::getT c = 123.3;//取到第四层中的charARG<3, int, double, float, char>::getT e = 'c';cout << "sizeof(a) = " << sizeof(a) << " a = " << a << endl;cout << "sizeof(b) = " << sizeof(b) << " b = " << b << endl;cout << "sizeof(c) = " << sizeof(c) << " c = " << c << endl;cout << "sizeof(e) = " << sizeof(e) << " e = " << e << endl;return 0;
}
          模板中的引用重叠

        

        C++11 标准引入了 "引用折叠" 规则,这个规则定义了在模板实例化过程中,不同类型的引用组合如何被折叠成最终的引用类型。引用折叠规则如下:

  • T & & -> T &
  • T & && -> T &
  • T && & -> T &
  • T && && -> T &&

        也就是说传入的类型是右值引用,并且参数中也是右值引用,T类型才是右值引用,否则是左值引用。

        下面带入代码演示:
 

#include<iostream>
using namespace std;#define TEST(func, n) {\printf("%s(%s) ", #func, #n);\func(n);\
}template<typename T>
void func(T &&a) {//假如T为int & 那么a的类型就为int & &&然后通过折叠得到为int &if (is_same<T &, decltype(a)>::value) {cout << " is left" << endl;//假如T为int && 那么a的类型就为int&& &&然后通过折叠得到为int &&} else if (is_same<T &&, decltype(a)>::value) {cout << " is right" << endl;} else {cout << " is a type" << endl;}return ;
}int main() {int n = 123; int& l = n;int&& r = 123;TEST(func, n); //n为左值, T类型就为int &TEST(func, l); //l为左值, T类型就为int &TEST(func, r); //r为左值, T类型就为int &TEST(func, 123); //123为右值, T类型就为int &&TEST(func, move(n)); //move(n)为右值, T类型就为int &&return 0;
}

        那么又有新问题出现了,传入的类型为引用的类型,那么该如何取获取他的类型呢,如下:

        

std::remove_reference 是一个类型特征工具,它能从一个类型中去除引用,并返回无引用的类型。例如:

  • 对于 int&std::remove_reference<int&>::typeint

  • 对于 int&&std::remove_reference<int&&>::type 也是 int

#include<iostream>
using namespace std;template<typename T>
void func(T &&t) {//通过remove_reference,去掉T的引用获取到他的类型typedef typename remove_reference<T>::type a;if (is_same<a, int>::value) cout << "a type is int" << endl;if (is_same<a, char>::value) cout << "a type is char" << endl;if (is_same<a, double>::value) cout << "a type is double" << endl;if (is_same<a, float>::value) cout << "a type is float" << endl;if (is_same<a, string>::value) cout << "a type is string" << endl;
}int main() {int a;string str = "hello";func(a);func(str);func('a');func(3.14);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/349764.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【iOS】YYModel源码阅读笔记

文章目录 前言一、JSON转换库对比二、YYModel性能优化三、YYModel的使用四、架构分析YYClassInfo 剖析 五、流程剖析转换前准备工作 – 将JSON统一成NSDictionary将NSDictionary 转换为Model对象提取Model信息使用NSDictionary的数据填充Model 总结 前言 先前写了JSONModel的源…

CVE-2024-23692:Rejetto HFS 2.x 远程代码执行漏洞[附POC]

文章目录 CVE-2024-23692&#xff1a;Rejetto HFS 2.x 远程代码执行漏洞[附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 CVE-2024-23692&#xff1a;Rejetto HFS 2.x 远程代码执行漏洞[附POC] 0x01 前言 …

macOS Sequoia 开发者测试版下载和安装教程

macOS Sequoia 于 2024年6月10日在WWDC 2024 上发布&#xff0c;里面添加了AI、窗口排列、操控iPhone等功能&#xff0c;目前发布的为测试版本&#xff0c;可能很多人不知道怎么去下载安装&#xff0c;现在小编教一下大家怎么安装最新的 macOS Sequoia 开发者测试版。 下载 mac…

感受光子芯片中试线,如何点亮未来计算与通信的革命之路(2024青岛智能装备与通信技术展)

光子芯片中试线&#xff1a;点亮未来计算与通信的革命之路 在新一代信息技术的浪潮中&#xff0c;光子芯片以其低能耗、高速度的特点备受瞩目。首条光子芯片中试线的建立&#xff0c;标志着我国在光电子领域的重大突破&#xff0c;同时也为即将到来的量子计算时代奠定了坚实基…

JAVA开发 使用Apache PDFBox库生成PDF文件,绘制表格

1. 表格位置定点 2.执行效果展示&#xff08;截取PDF文件图片&#xff09; 3.执行代码 当我们使用Apache PDFBox库在PDF文件中创建带有表格的内容&#xff0c;需要遵循几个步骤。PDFBox本身并没有直接的API来创建表格&#xff0c;但我们可以通过定位文本、绘制线条和单元格矩形…

【C语言】递归复杂度与链表OJ之双指针

【C语言】递归复杂度与链表OJ之双指针 &#x1f525;个人主页&#xff1a;大白的编程日记 &#x1f525;专栏&#xff1a;数据结构 文章目录 【C语言】递归复杂度与链表OJ之双指针前言一.递归复杂度1.1递归时间复杂度1.2递归空间复杂度 二.链表OJ之双指针2.1倒数第K个节点2.2链…

Python实现任务进度条展示(tqdm库实现进度条)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

数据结构习题(快期末了)

一个数据结构是由一个逻辑结构和这个逻辑结构上的一个基本运算集构成的整体。 从逻辑关系上讲&#xff0c;数据结构主要分为线性结构和非线性结构两类。 数据的存储结构是数据的逻辑结构的存储映像。 数据的物理结构是指数据在计算机内实际的存储形式。 算法是对解题方法和…

【机器学习】神经网络与深度学习:探索智能计算的前沿

前沿 神经网络&#xff1a;模拟人类神经系统的计算模型 基本概念 神经网络&#xff0c;又称人工神经网络&#xff08;ANN, Artificial Neural Network&#xff09;&#xff0c;是一种模拟人类神经系统结构和功能的计算模型。它由大量神经元&#xff08;节点&#xff09;相互连…

牛客链表刷题(一)

目录 题目一&#xff1a;反转链表 代码&#xff1a; 题目二&#xff1a;链表内指定区间反转 代码&#xff1a; 题目一&#xff1a;反转链表 代码&#xff1a; import java.util.*;/** public class ListNode {* int val;* ListNode next null;* public ListNode(int …

JavaScript快速入门系列-3(函数基础)

第三章:函数基础 3.1 函数定义与调用3.1.1 函数声明3.1.2 函数表达式3.2 参数与返回值3.3 匿名函数与立即执行函数表达式(IIFE)3.3.1 匿名函数3.3.2 立即执行函数表达式3.4 箭头函数3.4.1 箭头函数与this3.5 函数的高级话题3.5.1 闭包3.5.2 函数柯里化3.5.3 高阶函数小结在Jav…

代理服务

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 在爬取网页的过程中&#xff0c;经常会出现不久前可以爬取的网页现在无法爬取了&#xff0c;这是因为您的IP被爬取网站的服务器所屏蔽了。此时代理服…

【Linux】Linux环境基础开发工具_6

文章目录 四、Linux环境基础开发工具gdb 未完待续 四、Linux环境基础开发工具 gdb 我们已经可以写代码了&#xff0c;也能够执行代码了&#xff0c;但是代码错了该如何调试呢&#xff1f;Linux中可以使用 gdb 工具进行调试。 我们写一个简单的程序&#xff1a; 但是我们尝试…

靠这10个神级搜书网站,实现你电子书自由(含有声书资源)!

2024搜书利器大盘点&#xff0c;让你轻松找到心仪的电子书&#xff0c;你想要的都有&#xff01;竟然还有有声书&#xff01;速度收藏&#xff0c;这一次&#xff0c;让你实现电子书自由&#xff01; 阿星今天又来给你们送大礼了&#xff01;这次不是别的&#xff0c;是搜书网…

人工智能入门学习教程分享

目录 1.首先安装python,官网地址:Download Python | Python.org,进入网址,点击Windows链接 2.下载完成之后,进行傻瓜式安装,如果不选安装路径,默认会安装到C:\Users\Administrator\AppData\Local\Programs\Python\Python38目录下。 3.配置python环境变量,即把python的…

数据结构:手撕代码——顺序表

目录 1.线性表 2.顺序表 2.1顺序表的概念 2.2动态顺序表实现 2.2-1 动态顺序表实现思路 2.2-2 动态顺序表的初始化 2.2-3动态顺序表的插入 检查空间 尾插 头插 中间插入 2.2-4 动态顺序表的删除 尾删 头删 中间删除 2.2. 5 动态顺序表查找与打印、销毁 查找 …

计算机哈佛架构、冯·诺依曼架构对比

哈佛架构和冯诺依曼架构是两种不同的计算机系统架构&#xff0c;它们在存储器组织方式上有着显著的区别。下面是它们的原理、优缺点的对比以及一些常见的 MCU 采用的架构&#xff1a; 哈佛架构&#xff1a; 原理&#xff1a;哈佛架构将指令存储器&#xff08;程序存储器&#x…

Python连接Redis(简单连接、连接池连接、存取数据示例)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

QT漂亮QSS样式模仿流行VUE Element UI ,QSS漂亮大方美观样式 QSS样式 QTableWidget 漂亮样式QSS 快速开发QSS漂亮界面

在现代应用程序开发中&#xff0c;用户界面&#xff08;UI&#xff09;的设计与用户体验&#xff08;UX&#xff09;占据了至关重要的位置。Vue.js框架因其灵活性和丰富的生态系统而广受欢迎&#xff0c;其中Element UI作为一套为Vue设计的桌面端组件库&#xff0c;以其清晰的视…

27.设计注入功能界面

上一个内容&#xff1a;26.入口点注入项目搭建 使用 26.入口点注入项目搭建 它的代码为基础进行修改 效果图&#xff1a; 首先设置一些主窗口的边框属性 然后在IDD_PAGE_0里添加一个List Control 再给List Control设置调整大小类型属性 然后再给它添加一个变量 然后在拖入一个…