IBM,开始构建以量子为中心的超级计算机

图片

6月6日,IBM与Pasqal宣布了一项重大合作!IBM和Pasqal打算合作开发一种以量子为中心的超级计算的通用方法并促进化学和材料科学的应用研究。IBM和Pasqal将与高性能计算领域的领先机构合作,为以量子为中心的超级计算奠定基础——将量子计算与先进的经典计算相结合,以创建下一代超级计算机。此次合作被视为迈向量子计算机商业化和实际应用的关键一步。

这个事件的背后,到底能带出怎样的信号值得我们思考?

图片

亮点1:IBM与Pasqal是对手也不是对手,但他们“牵手”了!

总部位于巴黎的Pasqal是备受瞩目的欧洲资金最雄厚的量子计算机初创公司之一,也是欧洲量子战略对标美国的重要布局,而美国科技巨头IBM则已向量子技术领域投入了数十亿美元,被认为是该领域的领导者。同时,Pasqal和IBM分别是基于中性原子和超导电路的量子计算机领域的领导者

从技术路线来看,IBM实行的超导量子计算的TRL(技术就绪度)可以说是当前所有技术路线中最高的,并且,从公司综合实力(技术、人才、渠道等)方面来看,IBM也是绝对领先的。但如果放长到整个技术路线最终谁能胜出的层面来看,两家公司确实存在竞争关系。但,就是这样的竞争关系为何能让两家公司走向联手呢?

图片

亮点2:强强联合,进行多技术路线的“量超融合”!

图片


图:经典计算+量子计算

量子计算之于经典计算的优势不言而喻。由于NISQ时代的量子计算机只有几百个量子比特,并且其噪声严重限制了它们的能力。尽管量子计算机拥有巨大的潜能,但无论是三年、五年还是十年后,它都有其局限性。

当前,解决这一挑战的路径就是“混合计算”,将量子计算与经典计算结合,这一做法已经在美国、欧盟、澳大利亚等地已经开展。

图片


图:全球现有量子计算机与经典计算机相融合的计算中心及相关实验室
来源:2024全球量子计算产业发展展望,ICV&光子盒

图片


图:2023年量超融合进展事件
来源:2024全球量子计算产业发展展望,ICV&光子盒

IBM和Pasqal的合作旨在共同定义以量子为中心的超级计算机的软件集成架构,该架构可在多种量子计算机模式和先进的经典计算集群之间协调计算工作流。两家公司有着共同的愿景,即基于开源软件和技术社区的参与实现通用的集成方法。

具体来说,IBM 的量子计算机基于超导量子比特。这意味着该公司使用电子来创建量子比特——量子计算机内部携带量子信息的微小粒子。Pasqal 的技术使用一种称为中性原子的方法,该方法使用专门的激光捕获单个原子以形成量子比特。此次合作的目标之一是创建一个以量子为中心的超级计算的软件架构,该架构可与不同类型的量子计算方法兼容。

IBM和Pasqal计划在德国共同赞助一个区域性 HPC 技术论坛,并计划将这项工作扩展到其他地区。 这一举措凸显了两家公司致力于营造有利于创新和技术进步的合作环境的决心。

图片

亮点3:美国与法国曾签署量子合作声明,这是否为其“产物”?

量子计算技术早已进入多个国家的战略政策中。作为各国的战略性技术、未来的“杀手锏”,各国都将其视为“宝”,此次虽然是两家公司的合作,但我们认为,背后代表其国家的意志是合理的猜测,何况2023年3月,美国曾与法国签署量子合作的联合声明。

图片

图:美国与他国在量子领域签署合作情况
来源:全球量子信息政策观察,ICV&光子盒

美国是在量子技术里结盟最广泛的国家。截至2023年6月30日,美国已经与全球10个国家达成了量子信息科技合作的共识,签署了联合声明。这些合作伙伴在地理上横跨三大洲:欧洲有7个国家(包括荷兰、法国、瑞士、丹麦、瑞典、芬兰和英国),亚洲有2个国家(日本和韩国),而澳洲则有1个国家(澳大利亚)。特别值得一提的是,荷兰和韩国在2023年上半年加入了这一合作行列,与美国共同签署了量子信息科技合作的联合声明。

此次美国科技巨头IBM与法国量子初创明星公司Pasqal的合作,也预示着美法两国在量子这一科技领域开启了更深层次的交流

图片

亮点4:在材料科学和化学领域率先示范

此次合作代表着量子计算在变得更加实用和商业可行性方面迈出了重要一步。认识到以量子为中心的超级计算机在这些领域的直接潜力,此次合作旨在推动科学研究的发展,重点是推动行业在材料科学和化学领域采用量子计算。通过利用现有的量子计算专业知识,IBM和Pasqal致力于在这些领域定义将量子和经典计算相结合的最佳实践。

IBM和Pasqal旨在通过利用各自的全栈量子计算领导角色并与IBM去年成立的材料工作组合作,大幅推进量子计算在化学和材料科学领域的应用。该小组将继续探索最佳方法,利用量子和经典计算的混合来构建化学大规模计算的工作流程。

图片


Jay Gambetta (IBM)

IBM Fellow兼IBM Quantum副总裁Jay Gambetta对此次合作表示乐观。“以量子为中心的超级计算是高性能计算的未来,也是在化学、材料科学和其他科学应用领域实现近期量子优势的途径。与 Pasqal 的合作将确保这一未来对硬件模式开放且不可知,从而为我们的客户和用户创造更多价值,”Gambetta表示。

图片


Georges-Olivier Reymond (Pasqal)

Pasqal首席执行官Georges-Olivier Reymond也强调了此次合作的重要性。“今天我们与IBM 展开合作,标志着量子计算行业的一个重要里程碑。我们期待共同努力实现一个雄心勃勃的目标:开始为以量子为中心的超级计算建立商业最佳实践。利用这两种技术的优势,我们随时准备跟上客户日益增长的需求,满足他们日益增长的需求。”Reymond说道。

图片

IBM:建造以量子为中心的超级计算机

一直以来,IBM的每一次重要进展都在遵循其发布技术路线图。IBM新的目标是建造以量子为中心的超级计算,这将包含量子处理器、经典处理器、量子通信网络和经典网络,所有这些都将共同工作以彻底改变计算方式。为此,需要解决扩展量子处理器的挑战,开发一个运行环境以提供更高速度和质量的量子计算,并引入serverless编程模型以允许量子处理器和经典处理器协同工作。

图片

图:IBM 2023量子计算路线图,2024年5月
来源:IBM

IBM在 2019 年推出了第一个集成量子计算机系统—IBM Quantum System One,然后在 2020 年发布了开发路线图,展示了计划如何将量子计算机成熟为商业技术。在 2021 年发布了127 量子比特Eagle处理器并推出了Qiskit Runtime,这是一个由经典系统和量子系统协同的运行环境,用于支持在速度和规模上执行量子线路。

值得注意的是,2023 年,IBM把 Quantum Serverless 集成到其核心软件堆栈中,以启用线路编织等核心功能。线路编织技术将较大的线路分解成更小的部分以在量子计算机上运行,然后使用经典计算机将结果重新组合在一起。 

同时,IBM计划到 2025 年,将通过模块化量子硬件以及随附的控制电子设备和低温基础设施有效地消除扩展量子处理器的主要界限。在软件和硬件中推动模块化将是实现远远领先于竞争对手的关键。

更新的路线图延续到了 2025 年,但发展不会止步于此。届时,将消除扩展量子硬件的一些最大障碍,同时开发能够将量子集成到计算工作流程中的工具和技术。当进入未来量子时代,这种巨变将相当于用 GPS 卫星取代纸质路线图。

不过,IBM不仅仅是在考虑量子计算机,同时正试图引发整个计算范式的转变。多年来,以 CPU 为中心的超级计算机是社会计算的处理主力。在过去的几年里,以人工智能为中心的超级计算机的出现,其中 CPU 和 GPU 在巨型系统中协同工作,以解决人工智能繁重的工作负载。

现在,正在迎来以量子为中心的超级计算机时代,QPU将与 CPU 和 GPU 一起编织成一个新的计算架构。以量子计算为中心的超级计算机将成为那些解决最棘手问题、最具开创性研究以及开发最尖端技术的基本工具。

图片

量超融合的实践与发展

“量超融合”是指将量子计算和经典超级计算机协同工作,可以实现量子算力和经典算力异构融合。根据具体应用算法的特点,量子计算可根本性加速其中的关键步骤,协同经典超级计算显著提高复杂问题求解效率,甚至是解算经典计算无法解算的难题。

图片

2023年2月, 微软推出基于云的量子计算平台Azure Quantum,提供对量子硬件、软件和开发工具的访问,帮助研究人员和开发人员探索量子计算的潜力。Azure Quantum 支持量子算法的开发和执行,并允许与传统计算资源(如 Azure 的云计算平台)集成。此外,它还支持混合量子-经典计算,允许用户同时运行量子算法和经典算法来执行复杂的计算。Azure Quantum 提供对各种量子硬件和软件的访问,包括量子处理器、模拟器和开发工具。

图片


Nvidia DGX Quantum

2023年3月,英伟达(Nvidia)发布了全球首个GPU加速的量子计算系统Nvidia DGX Quantum提供高性能和低延迟的量子与经典计算融合新架构。NVIDIA DGX Quantum 把全球最强大的加速计算平台(由NVIDIA Grace Hopper 超级芯片和CUDA Quantum开源编程模型支持)与全球最先进的量子控制平台Quantum Machines 的 OPX结合在一起。这种结合使研究人员能够构建极其强大的应用程序,将量子计算与最先进的经典计算相结合,实现校准、控制、量子误差校正和混合算法。

NVIDIA HPC 和量子总监 Tim Costa 表示:“量子加速超级计算具有重塑科学和工业的潜力,其能力可以极大地服务于人类。NVIDIA DGX Quantum 将使研究人员能够突破量子经典计算的界限。”

2024年5月,英伟达(NVIDIA)加速布局量子计算,并详细介绍了其芯片如何加速HPC行业的创新,特别是对于由人工智能(AI)驱动的系统,这些系统将通过超级计算推动科学进步。英伟达还宣布了在全球国家量子计算中心加速其量子计算工作的计划,其中包括在国际各地安装其开源CUDA-Q平台。该平台是其在量子计算领域的关键组成部分,它将量子处理单元(QPUs)与超级计算机紧密结合,以实现更高效的量子计算。这种混合量子-经典加速超级计算的方法,不仅能够解决量子比特的噪声问题,还能开发出更高效的算法,这对于推动量子计算的实际应用至关重要。

图片

充分利用两方优势,创建一个无缝、集成的计算环境

当下,经典计算被引入量子计算,两者的融合又带来了新的挑战。

《福布斯》的文章曾指出,控制大型纠缠系统尤其具有挑战性,而且在获得足够的量子比特以执行有用的计算之前,时间尺度还很长。随着电路规模的扩大和参数数量的增加,对这些参数进行经典优化的挑战也随之增加——这一经典挑战也正是投资量子计算的初衷之一。

使用数字量子计算机进行量子模拟还需要容错,而现有的误差率还远未达到这个水平。进一步,量子系统的模拟需要一定程度的精确控制,而数字量子计算目前还无法实现。因此,模拟量子计算才是解决之道。

在一篇题为“量子模拟的内在问题,以及如何解决它”的论文中,Quanscient公司的尤卡·克努蒂宁(Jukka Knuutinen)和柳博米尔·布丁斯基(Ljubomir Budinski)博士谈到了算法面临的一个基本问题:量子力学本身是线性的,但许多需要解决的问题都涉及非线性方程。

随着系统的集成度越来越高,需要确定何时使用量子处理,何时使用经典处理。开发混合量子应用的现有工具本身需要大量经典计算资源,尤其是内存;除了增加可用的量子计算资源外,还需要采用需要更少资源的新算法。而开发的算法不仅要能证明比经典算法更具优势,还要能经受住量子启发算法的挑战。最后,无论是硬件还是软件,互操作性都需要一定程度的标准化——而这种标准化甚至尚未开始。

量子计算的成功不仅取决于量子比特保真度和寿命以及用于控制量子比特的电子技术的进步,还取决于创新软件组件和硬件架构的开发:同时,组件又能以创造性和可扩展的方式支持硬件。

这一具有前瞻性的举措又意味着什么呢?

(1)混合基础设施:考虑采用一种整合经典和量子资源的计算基础设施,而不是孤立的计算能力“孤岛”。

(2)算法方法:研究混合算法,充分利用量子计算和经典计算的优势。承认每种处理器在某些方面比其他处理器做得更好,并利用这种“最佳”策略。

(3)管理框架:选择SLURM(用于资源管理的简单Linux实用程序)等集成管理系统来完成资源分配、调度、优先级排序和会计等任务。有时,在传统环境中被证明有效的工具在混合环境中也同样有效。

(4)部署选择:评估是内部部署的量子计算还是基于云的服务更适合贵组织的计算和安全需求。

(5)供应商策略:不同的量子计算供应商提供与经典系统不同程度的集成,需要注意将其量子解决方案集成到现有基础设施中的难易程度。

参考链接

https://newsroom.ibm.com/2024-06-06-IBM-and-Pasqal-Initiate-Collaboration-to-Define-Classical-Quantum-Integration-for-Quantum-Centric-Supercomputers

https://www.ibm.com/roadmaps/quantum.pdf

https://www.pasqal.com/news/ibm-and-pasqal-initiate-collaboration/

https://nvidianews.nvidia.com/news/nvidia-announces-new-system-for-accelerated-quantum-classical-computing

https://developer.nvidia.com/cuda-q

https://developer.nvidia.com/zh-cn/blog/introducing-qoda-the-platform-for-hybrid-quantum-classical-computing/

https://www.quera.com/blog-posts/hybrid-quantum-computing-bridging-classical-and-quantum-worlds

https://www.forbes.co 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/350399.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

理解Python的元类

1.type()函数 type 函数是一个内置函数,用来获取一个对象的类型。它可以接受一个参数,返回这个参数的数据类型。type也可以用来创建类,type就是元类 x333 list["ab"] tuple (1, "a", True, 3.14) dict {name: Alice,…

机器学习实验------PCA

目录 一、介绍 二、算法流程 (1)数据中心化 (2)计算协方差矩阵 (3)特征值分解 (4)选择特征 三、运行结果展示 四、实验中遇到的问题 五、PCA的优缺点 优点: 缺点…

广东启动“粤企质量提升工作会议” 着力提升产品和服务质量

6月5日,由广东质量峰会组委会牵头,联合相关质量、信用、打假和检验检测等部门共同举办的“粤企质量提升工作会议”在广州正式启动。本次工作会议旨在贯彻落实《质量强国建设纲要》及《广东省质量强省建设纲要》精神,深入开展全民质量行动,弘扬企业家和工匠精神,营造政府重视质量…

如何解决mfc100u.dll丢失问题,关于mfc100u.dll丢失的多种解决方法

在计算机使用过程中,我们常常会遇到一些错误提示,其中之一就是“计算显示缺失mfc100u.dll”。这个问题可能会影响到我们的正常使用,因此了解它的原因、表现以及解决方法是非常重要的。小编将详细介绍计算显示缺失mfc100u.dll的问题&#xff0…

软件工程期末复习题

目录 选择 判断 选择 下列说法中正确的是 ( B )。 A、20 世纪50 年代提出了软件工程的概念摇 B、20 世纪60 年代提出了软件工程的概念 C、20 世纪70 年代出现了客户端/ 服务器技术 D、20 世纪80 年代软件工程学科达到成熟 软件危机的主要原因是 ( D )。 A、软件工具落后…

数据预处理 #数据挖掘 #python

数据分析中的预处理步骤是数据分析流程中的重要环节,它的目的是清洗、转换和整理原始数据,以便后续的分析能够准确、有效。预处理通常包括以下几个关键步骤: 数据收集:确定数据来源,可能是数据库、文件、API或网络抓取…

【C++】stack、queue和deque的使用

💗个人主页💗 ⭐个人专栏——C学习⭐ 💫点击关注🤩一起学习C语言💯💫 目录 导读 一、stack 1. stack介绍 2. stack使用 二、queue 1. queue介绍 2. queue使用 三、deque 1. deque介绍 2. deque的…

<Linux>进程

进程 文章目录 进程PCBpid与ppidfork系统调用进程状态孤儿进程状态优先级环境变量进程地址空间虚拟地址 最直观的表示:启动一个软件,本质就是启动一个进程 PCB PCB是Process Control Block的简称,是用来描述进程状态信息的数据结构。 进程运…

uniapp开发微信小程序问题汇总

1. 自定义校验规则validateFunction失效 2. 微信小程序不支持<Br>换行 在 <text></text> 标签中使用\n(必须 text 标签&#xff0c;view 标签无效 ) 3. 微信小程序无法使用本地静态资源图片的解决方法 (1) 将图片上传到服务器&#xff0c;小程序访问该图片…

springboot与flowable(9):候选人组

act_id_xxx相关表存储了所有用户和组的数据。 一、维护用户信息 Autowiredprivate IdentityService identityService;/*** 维护用户*/Testvoid createUser() {User user identityService.newUser("zhangsan");user.setEmail("zhangsanqq.com");user.setF…

Java_异常

什么是异常&#xff1f; 异常就是代表程序出现问题 Error&#xff1a;代表系统级别的错误&#xff08;属于严重问题&#xff09;&#xff0c;也就是说系统一旦出现问题&#xff0c;sun公司会把这些问题封装成Error对象给出来&#xff0c;说白了&#xff0c;Error是给sun公司自…

02_01_SpringMVC初识

一、回顾MVC三层架构 1、什么是MVC三层 MVC是 模型&#xff08;Model&#xff09;、视图&#xff08;View&#xff09;、控制器&#xff08;Controller&#xff09;的简写&#xff0c;是一种软件设计规范。主要作用是降低视图与业务逻辑之间的双向耦合&#xff0c;它不是一种…

android 播放视频

播放视频文件 新建一个activity_main.xml文件&#xff0c;文件中放置了3个按钮&#xff0c;分别用于控制视频的播放、暂停和重新播放。另外在按钮的下面又放置了一个VideoView&#xff0c;稍后的视频就将在这里显示。 <LinearLayout xmlns:android"http://schemas.an…

大模型应用:LangChain-Golang核心模块使用

1.简介 LangChain是一个开源的框架&#xff0c;它提供了构建基于大模型的AI应用所需的模块和工具。它可以帮助开发者轻松地与大型语言模型(LLM)集成&#xff0c;实现文本生成、问答、翻译、对话等任务。LangChain的出现大大降低了AI应用开发的门槛&#xff0c;使得任何人都可以…

爬虫可以不必自己写,使用ChatGPT编写抓取电影评论数据脚本

经常去新华书店看看有没有什么新书上架&#xff0c;还是更新挺及时的&#xff0c;可以反映新的技术趋势。这不&#xff0c;最近就看到了这本《巧用 ChatGPT 快速搞定数据分析》&#xff0c;作者是个大牛&#xff0c;第一次看到prompt可以这么写&#xff0c;得写这么长&#xff…

网络协议,OSI,简单通信,IP和mac地址

认识协议 1.讲故事 2004年&#xff0c;小明因为给他爹打电话&#xff08;座机&#xff09;费用太贵&#xff0c;所以约定一种信号&#xff0c;响一次是报平安&#xff0c;响两次是要钱&#xff0c;响三次才需要接通。 2.概念 协议&#xff1a;是一种约定&#xff0c;这种约…

14. RTCP 协议

RTCP 协议概述 RTCP&#xff08;Real-time Transport Control Protocol 或 RTP Control Protocol 或简写 RTCP&#xff09;&#xff0c;实时传输控制协议&#xff0c;是实时传输协议&#xff08;RTP&#xff09;的一个姐妹协议。 注&#xff1a;RTP 协议和 RTP 控制协议&#…

新版嘎嘎快充互联互通系统配置文档

宝塔环境配置 登录宝塔账号&#xff0c;安装nginx、mysql5.7、php7.2、supervisor、redisphp安装扩展&#xff1a; 1&#xff09;安装swooleloader72 将嘎嘎官方提供的swoole_loader_72_nts.so文件上传到 /www/server/php/72/lib/php/extensions/no-debug-non-zts-20170718…

【Tkinter界面】Canvas 图形绘制(03/5)

文章目录 一、说明二、画布和画布对象2.1 画布坐标系2.2 鼠标点中画布位置2.3 画布对象显示的顺序2.4 指定画布对象 三、你应该知道的画布对象操作3.1 什么是Tag3.2 操作Tag的函数 https://www.cnblogs.com/rainbow-tan/p/14852553.html 一、说明 Canvas&#xff08;画布&…

重塑IT审计的未来:数智化审计赋能平台的创新与实践

重塑IT审计的未来&#xff1a;数智化审计赋能平台的创新与实践 一、当前企业开展IT审计面临的挑战 随着信息技术的快速发展、企业数字化转型的持续深入&#xff0c;以及网络安全合规要求的不断增强&#xff0c;企业开展新型IT审计重要性越来越突出&#xff0c;但实施难度却越来…