深度学习(九)——神经网络:最大池化的作用

一、 torch.nn中Pool layers的介绍

官网链接:

https://pytorch.org/docs/stable/nn.html#pooling-layers

1. nn.MaxPool2d介绍

nn.MaxPool2d是在进行图像处理时,Pool layers最常用的函数

官方文档:MaxPool2d — PyTorch 2.0 documentation

(1)torch.nn.MaxPool2d类

class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

(2)参数介绍

  • kernel_size(int or tuple): 用于设置一个取最大值的窗口,如设置为3,那么会生成一个3×3的窗口

  • stride(int or tuple): 默认值为kernel_size,步幅,和卷积层中的stride一样

  • padding(int or tuple): 填充图像,默认填充的值为0

  • dilation(int): 空洞卷积,即卷积核之间的距离。如卷积核的尺寸为3×3,dilation为1,那么返回一个大小为5×5的卷积核,卷积核每个元素与上下左右的元素之间空一格

  • return_indices(bool): 一般用的很少,不做介绍

  • ceil_mode(bool): 默认为False。为True时,输出的shape使用_ceil_格式(向上取整,即进一);为False时,输出的shape使用_floor_格式(向下取整)。

二、最大池化操作

1. 最大池化操作举例(理论介绍)

假设有一个5×5的图像和一个3×3的池化核(kenel_size=3),如下图。池化过程就是将池化核与图像进行匹配。下面介绍最大池化的具体操作。

  • 首先用池化核覆盖图像,如下图。然后取到最大值,作为一个输出。

  • 上图为第一次最大池化操作,最大值为2。将2作为一个输出,如下图。

  • 由于本例未对stride进行设置,故stride采取默认值,即_stride=kernel_size=3_,池化核移动如下图(移动方式与上上文中提到的卷积核移动方式相同,不再赘述)。由于池化核移动已超出范围,要不要取这3×2部分的最大值,取决于call_mode的值,若_ceil_mode=True_,则取最大值,即输出3;若_ceil_mode=False_,则不取这部分的值,即这一步不进行池化操作。

    • 假设_ceil_mode=True_,经过最大池化操作后,输出的结果如下图。

    • 假设_ceil_mode=False_,经过最大池化操作后,输出的结果如下图。

2. 操作前后的图像大小计算公式

跟卷积操作的计算公式一样。具体如下:

参数说明:

  • N: 图像的batch_size

  • C: 图像的通道数

  • H: 图像的高

  • W: 图像的宽

计算过程:

  • Input:\( (N,C_{in}​,H_{in}​,W_{in}​)\) or \((C_{in}​,H_{in}​,W_{in}​)\)

  • Output: \((N,C_{out}​,H_{out}​,W_{out}​)\) or \((C_{out}​,H_{out}​,W_{out}​)\)

    • 其中有:

      \(H_{out}​=⌊\frac{H_{in}​+2×padding[0]−dilation[0]×(kernel\_size[0]−1)−1​}{stride[0]}+1⌋\)

      \(W_{out}​=⌊\frac{W_{in}​+2×padding[1]−dilation[1]×(kernel\_size[1]−1)−1​}{stride[1]}+1⌋\)

看论文的时候,有些比如像padding这样的参数不知道,就可以用这条公式去进行推导

3. 最大池化操作代码举例

依然选取上面的例子,进行编程。

import torch
from torch import nn
from torch.nn import MaxPool2d
input=torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]],dtype=torch.float32)   #输入图像数据;与卷积操作不同的是,最大池化操作要求输入的图像数据是浮点数,而不是整数(为整数第23行会报错)
input=torch.reshape(input,(-1,1,5,5))     #构造图像数据,使其符合输入标准,即分别为(输入batch_size待定,1通道,大小为5×5)
print(input.shape)  #[Run] torch.Size([1, 1, 5, 5]);数据格式符合输入标准#构造神经网络
class Demo(nn.Module):def __init__(self):super(Demo,self).__init__()self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)  #设置最大池化函数,这里以ceil_mode=True为例def forward(self,input):output=self.maxpool1(input)  #将输入的数据(input)进行最大池化草子哦return outputdemo=Demo()  #创建神经网络
output=demo(input)
print(output)
"""
[Run]
tensor([[[[2., 3.],[5., 1.]]]])符合前面ceil_mode=True例子的输出结果一致
"""

4. 为什么要进行最大池化(最大池化的作用)

  • 最大程度地保留输入特征,并使数据量减小

  • 上述例子中输入图像为5×5,经过最大池化操作之后变成了3×3,甚至为1×1。使得图像特征得以保留,而数据量大大减少了,对整个网络来说参数减少了,运算速度也变快了

  • 打个比方,这就像看视频的时候,高清(输入图像)变(经过最大池化操作)标清(输出数据)

使用具体图片示例,介绍最大池化的作用:

from torch import nn
from torch.nn import MaxPool2d
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset=torchvision.datasets.CIFAR10("./dataset",train=False,download=True,transform=torchvision.transforms.ToTensor())
dataloder=DataLoader(dataset,batch_size=64)#构造神经网络
class Demo(nn.Module):def __init__(self):super(Demo,self).__init__()self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)  #设置最大池化函数,这里以ceil_mode=True为例def forward(self,input):output=self.maxpool1(input)  #将输入的数据(input)进行最大池化草子哦return outputdemo=Demo()  #创建神经网络writer=SummaryWriter("logs_maxpool")
step=0for data in dataloder:imgs,targets=datawriter.add_images("input",imgs,step)output=demo(imgs)writer.add_images("output",output,step)step+=1
writer.close()

对比输入输出,可以看出图像更糊了

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/353108.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

11.docker镜像分层dockerfile优化

docker镜像的分层(kvm 链接克隆,写时复制的特性) 镜像分层的好处:复用,节省磁盘空间,相同的内容只需加载一份到内存。 修改dockerfile之后,再次构建速度快 分层:就是在原有的基础镜像上新增了服…

Thinkphp校园新闻发布系统源码 毕业设计项目实例

Thinkphp校园新闻发布系统源码 毕业设计项目实例 校园新闻发布系统模块: 用户模块:注册,登陆,查看个人信息,修改个人信息,站内搜索,新闻浏览等功能, 后台管理员模块:会员…

翻转数位00

题目链接 翻转数位 题目描述 注意点 可以将一个数位从0变为1找出能够获得的最长的一串1的长度(必须是连续的) 解答思路 参照题解使用动态规划解决本题,对于任意一个位置i,dp[i][0]表示到达且包含第i位不翻转0最长1的长度&…

每天一个数据分析题(三百五十九)- 多维分析模型

图中是某公司记录销售情况相关的表建立好的多维分析模型,请根据模型回答以下问题: 2)产品表左连接品牌表的对应关系属于? A. 一对多 B. 一对一 C. 多对一 D. 多对多 数据分析认证考试介绍:点击进入 题目来源于CD…

等待 chrome.storage.local.get() 完成

chrome.storage.local.get() 获取存储处理并计数,内部计数正常,外部使用始终为0,百思不得其解。 如何在继续执行之前等待异步chrome.storage.local.get()完成-腾讯云开发者社区-腾讯云 (tencent.com) 原来我忽略了异步问题,最简…

推荐常用的三款源代码防泄密软件

三款源代码防泄密软件——安秉源代码加密、Virbox Protector 和 MapoLicensor——确实各自在源代码保护的不同方面有其专长。这些软件可以满足企业对于源代码保护的三大需求:防止泄露、防止反编译和防止破解。 安秉源代码加密: 专注于源代码文件的加密&…

【每天学会一个渗透测试工具】Nessus安装及使用指南

🌝博客主页:泥菩萨 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 | 每天学会一个渗透测试工具 其他扫描工具: AWVS和Xray:应用漏洞扫描工具 fscan:虽然能扫主机,但比较老了…

【教学类-64-02】20240610色块眼力挑战(二)-2-25宫格色差10-100(10倍)(星火讯飞)

背景需求 以下的色块眼里挑战需要人工筛选图片,非常繁琐。 【教学类-64-01】20240607色块眼力挑战(一)-0-255随机底色-CSDN博客文章浏览阅读446次,点赞12次,收藏5次。【教学类-64-01】20240607色块眼力挑战&#xff…

Playwright工作原理

执行test时,有哪些关键步骤 当我们用Playwright编写一段简单的test script,代码如下所示:在test case中第一段代码就是await page.goto(xxxxx) import { test, expect } from playwright/test;test(test, async ({ page }) > {await page…

【Windows】配置Flutter开发环境

一、下载 flutter sdk 点此跳至下载官网 下载好flutter sdk,并解压到自定义的位置。 二、配置环境变量 此电脑 --> 右键 选择 属性 --> 点击 高级系统设置 --> 会弹出系统属性的窗口,点击 环境变量 按钮 1.配置加速镜像地址 PUB_HOSTED_…

为啥找对象千万别找大厂男,还好我不是大厂的。。

网上看到一大厂女员工发文说:找对象千万别找大厂男,理由说了一大堆,无非就是大厂男为了逃避带娃,以加班为由宁愿在工位上玩游戏也不愿回家。当然这种观点有的人赞同有的人反对。 网友精彩评论: --------------下面是今…

Python武器库开发-武器库篇之链接提取器(六十)

Python武器库开发-武器库篇之链接提取器(六十) 链接提取器介绍 链接提取器(Link Extractor)是一种用于从网页中提取链接的工具。它可以从网页的源代码中识别出所有的链接,并将这些链接提取出来。链接提取器可以用于各…

Maya 白膜渲染简单教程

零基础渲染小白,没关系,一篇超简单教程带你学会渲染白膜。 先打开Maya,看看面板有没有渲染器,这里以Arnold为主。 要是没有这个,就去找插件管理器, Arnold的是mtoa,在搜索栏搜,然后把…

打造精致UI界面:字体设计的妙招

字体设计是UI设计的关键模块之一。字体设计是否有效可能直接实现或破坏整个UI界面。那么,界面设计的字体设计有哪些规范呢?如何设计细节字体?本文将解释字体设计规范的可读性、可读性和可用性,并介绍UI界面中的字体设计技巧。 如…

02-ES6新语法

1. ES6 Proxy与Reflect 1.1 概述 Proxy 与 Reflect 是 ES6 为了操作对象引入的 API 。 Proxy 可以对目标对象的读取、函数调用等操作进行拦截,然后进行操作处理。它不直接操作对象,而是像代理模式,通过对象的代理对象进行操作,…

功能测试的内容与目的是什么?

在软件开发与测试过程中,功能测试是不可或缺的关键步骤,它主要关注软件产品是否能够按照设计规格和用户需求实现预定的功能。功能测试的内容与目的,简单来讲,就是验证软件的各种特性和功能是否正确、完整且符合预期,确…

docker 中 File Sharing 和Volumes 的区别

在 Docker 中,File Sharing 和 Volumes 都涉及到将文件和目录从主机系统映射到容器中,但它们的用途和实现方式有一些重要的区别: 一、简介 File Sharing 是 Docker Desktop 在 Windows 和 macOS 上的一项功能,允许你将主机文件系…

API-操作元素内容

学习目标: 掌握操作元素内容 学习内容: 操作元素内容元素innerText属性元素innerHTML属性案例 操作元素内容: DOM对象都是根据标签生成的,所以操作标签,本质上就是操作DOM对象。就是操作对象使用的点语法。如果想要修…

开源的数字孪生平台

欧洲对工业4.0的追求体现在三个方面: 数字孪生、智能制造和万物互联。 资助2440万欧元的开源数字孪生平台 源代码: http://www.gitpp.com/ccdan/dpqq-digital-twins 这套数字孪生是工业4.0整体规划中的中的一项技术,实现了一种称为“数字…

正则表达式常用表示

视频教程:10分钟快速掌握正则表达式 正则表达式在线测试工具(亲测好用):测试工具 正则表达式常用表示 限定符 a*:a出现0次或多次a:a出现1次或多次a?:a出现0次或1次a{6}:a出现6次a…