区间预测 | Matlab实现EVO-CNN-SVM能量谷算法优化卷积神经网络支持向量机结合核密度估计多置信区间多变量回归区间预测

区间预测 | Matlab实现EVO-CNN-SVM能量谷算法优化卷积神经网络支持向量机结合核密度估计多置信区间多变量回归区间预测

目录

    • 区间预测 | Matlab实现EVO-CNN-SVM能量谷算法优化卷积神经网络支持向量机结合核密度估计多置信区间多变量回归区间预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现EVO-CNN-SVM能量谷算法优化卷积神经网络支持向量机结合核密度估计多置信区间多变量回归区间预测;

2.多变量单输出,包括点预测+概率预测曲线+核密度估计曲线,MatlabR2021a及以上版本运行,提供多种置信区间!评价指标包括R2、MAE、RMSE、MAPE、区间覆盖率picp、区间平均宽度百分比pinaw等。

3.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行main文件一键出图。

4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现EVO-CNN-SVM能量谷算法优化卷积神经网络支持向量机结合核密度估计多置信区间多变量回归区间预测

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, end)';
N = size(P_test, 2);
%% 归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% *值评估指标*
errorTest = T_sim2 - T_test;
AE = abs(errorTest); %绝对误差
MSEErrorTest = mse(errorTest);  %测试集误差
figure;
subplot(2,2,1)
bar(errorTest);
subplot(2,2,2)
histogram(AE,'BinWidth',0.5);
xlabel('绝对误差区间的中位数','FontWeight',"bold");
ylabel('位于该误差区间的样本个数','FontWeight',"bold");
MAE = sum(AE)/length(AE);
MSE = MSEErrorTest;
RMSE = sqrt(MSE);
disp(['测试集数据的R2为:', num2str(R2)])
disp(['测试集数据的MAE为:', num2str(mae2)])
disp(['测试集数据的RMSE为:', num2str(RMSE2)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/354905.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Ubuntu通用压力测试】Ubuntu16.04 CPU压力测试

使用 stress 对CPU进行压力测试 我也是一个ubuntu初学者,分享是Linux的优良美德。写的不好请大佬不要喷,多谢支持。 sudo apt-get update 日常先更新再安装东西不容易出错 sudo apt-get upgrade -y 继续升级一波 sudo apt-get install -y linux-tools…

【尚庭公寓SpringBoot + Vue 项目实战】移动端登录管理(二十)

【尚庭公寓SpringBoot Vue 项目实战】移动端登录管理(二十) 文章目录 【尚庭公寓SpringBoot Vue 项目实战】移动端登录管理(二十)1、登录业务2、接口开发2.1、获取短信验证码2.2、登录和注册接口2.3、查询登录用户的个人信息 1、…

后端学习笔记:Python基础

后端学习笔记:Python基础 数据类型: Python中主要有以下几种常用的基本数据类型: String 字符串类型,用单引号或者双引号引用Number 数字类型,包括浮点数,整数,长整数和复数List 列表项&…

ENVI实战—一文搞定非监督分类

实验1:使用isodata法分类 目的:学会使用isodata法开展非监督分类 过程: ①导入影像:打开ENVI,按照“文件→打开为→光学传感器→ESA→Sentinel-2”的顺序,打开实验1下载的哨兵2号数据。 图1 ②区域裁剪…

Hbase搭建教程

Hbase搭建教程 期待您的关注 ☀小白的Hbase学习笔记 目录 Hbase搭建教程 1.上传hbase的jar包并解压 2.重新登录 3.启动zookeeper 4.配置环境变量 5.关闭ZK的默认配置 6.修改hbase-site.xml文件 7.修改regionservers文件 8.将配置好的文件分发给其它节点 9.配置环境变量…

PyCharm新手入门

前言 在之前《Python集成开发工具的选择》一文中介绍了python初学者可以使用Jupyter Notebook,Jupyter Notebook简单易用,可以用来练习代码编写,但是实际生产开发环境使用这个工具是远远不够用的,因为实际软件开发中需要软件调试…

LabVIEW程序闪退问题

LabVIEW程序出现闪退问题可能源于多个方面,包括软件兼容性、内存管理、代码质量、硬件兼容性和环境因素。本文将从这些角度进行详细分析,探讨可能的原因和解决方案,并提供预防措施,以帮助用户避免和解决LabVIEW程序闪退的问题。 1…

软考高级论文真题“论大数据lambda架构”

论文真题 大数据处理架构是专门用于处理和分析巨量复杂数据集的软件架构。它通常包括数据收集、存储、处理、分析和可视化等多个层面,旨在从海量、多样化的数据中提取有价值的信息。Lambda架构是大数据平台里最成熟、最稳定的架构,它是一种将批处理和流…

前端锚点 点击 滑动双向绑定

一. 页面样式 二. 代码 <div class"flexBox"><div class"mdDiv" v-for"(item,index) in tabList" :key"index" :class"nowChooseindex?choosed:" click"jumpMD(index, item.id)">{{item.name}}&l…

C++ 实现HTTP的客户端、服务端demo和HTTP三方库介绍

本文使用C模拟实现http的客户端请求和http的服务端响应功能&#xff0c;并介绍几种封装HTTP协议的三方库。 1、实现简单HTTP的服务端功能 本程序使用C tcp服务端代码模拟HTTP的服务端&#xff0c;服务端返回给客户端的消息内容按照HTTP协议的消息响应格式进行了组装。 demo如…

Apipost模拟HTTP客户端

目录 APIFOX的站内下载&#xff1a; Apipost模拟HTTP客户端&#xff08;正文&#xff09; 新建窗口 添加服务器地址、头信息介绍 添加请求体 发送以及返回状态 模拟HTTP客户端的软件有很多&#xff0c;其中比较著名的就有API-FOX、POSTMAN。 相信很多小伙伴都使用POSTMAN…

Maya 2024 mac/win版:创意无界,设计新生

Maya 2024是一款由Autodesk推出的业界领先的三维计算机图形软件&#xff0c;广泛应用于电影、游戏、广告等创意产业。这款软件以其强大的功能和卓越的性能&#xff0c;为艺术家们提供了一个实现创意梦想的平台。 Maya 2024 mac/win版获取 在建模方面&#xff0c;Maya 2024提供…

Flutter 自定义日志模块设计

前言 村里的老人常说&#xff1a;“工程未动&#xff0c;日志先行。” 有效的利用日志&#xff0c;能够显著提高开发/debug效率&#xff0c;否则程序运行出现问题时可能需要花费大量的时间去定位错误位置和出错原因。 然而一个复杂的项目往往需要打印日志的地方比较多&#…

YOLOv10改进 | Conv篇 |YOLOv10引入SPD-Conv卷积

1. SPD-Conv介绍 1.1 摘要:卷积神经网络(CNN)在图像分类和目标检测等许多计算机视觉任务中取得了巨大的成功。 然而,在图像分辨率较低或物体较小的更艰巨的任务中,它们的性能会迅速下降。 在本文中,我们指出,这源于现有 CNN 架构中一个有缺陷但常见的设计,即使用跨步卷…

【github】项目的代码仓库重命名

问题 有时候&#xff0c;我们先创建了远端项目仓库&#xff0c;然后就把相关code上传到远端项目仓库。 可能需要结合实际情况对远端项目仓库进行重命名。 当前仓库名称v_ttc&#xff0c;如何将他修改成v_datejs 操作步骤 1、在 GitHub.com 上&#xff0c;导航到存储库的主页…

【云原生】Kubernetes----Metrics-Server组件与HPA资源

目录 引言 一、概述 &#xff08;一&#xff09;Metrics-Server简介 &#xff08;二&#xff09;Metrics-Server的工作原理 &#xff08;三&#xff09;HPA与Metrics-Server的作用 &#xff08;四&#xff09;HPA与Metrics-Server的关系 &#xff08;五&#xff09;HPA与…

java面向对象(上)

一.面向对象与面向过程 1.面向过程 面向过程(procedure Oriented Programming),简称POP,主要思想就是将问题分解成一个个步骤去解决,把这个步骤称为函数. 典型语言:C语言 优点:可以大大简化代码 缺点:当代码量过大时,不方便维护 2.面向对象 面向对象(Object Oriented Pr…

【C语言】手写学生管理系统丨附源码+教程

最近感觉大家好多在忙C语言课设~ 我来贡献一下&#xff0c;如果对你有帮助的话谢谢大家的点赞收藏喔&#xff01; 1. 项目分析 小白的神级项目&#xff0c;99%的程序员&#xff0c;都做过这个项目&#xff01; 掌握这个项目&#xff0c;就基本掌握 C 语言了&#xff01; 跳…

口袋中有红、黄、蓝、白、黑5种颜色的球若干。每次从口袋中任意取出3个球,问得到3种不同颜色的球的可能取法,输出每种排列的情况

如果一个变量只能有几种可能的值&#xff0c;可以定义为枚举&#xff08;enumeration&#xff09;类型。所谓"枚举"是指将变量的值一一列举出来&#xff0c;变量的值只能在列举出来的值的范围内。 声明枚举类型用enum开头。例如&#xff1a; enum weekday{su…

Matlab个性化绘图第3期—带三维球标记的折线图

前段时间有会员在群里问该如何绘制下面这种带三维球标记的折线图&#xff1a; 本期内容就来分享一下带三维球标记的折线图的Matlab绘制思路。 先来看一下成品效果&#xff1a; 特别提示&#xff1a;本期内容『数据代码』已上传资源群中&#xff0c;加群的朋友请自行下载。有需…