数据可视化实验五:seaborn绘制进阶图形

目录

一、绘制动态轨迹图

1.1 代码实现

1.2 绘制结果

二、使用seaborn绘制关系图

2.1 绘制散点图分析产品开发部已离职的员工的评分与平均工作时间

2.1.1 代码实现

2.1.2 绘制结果

​编辑

2.2 基于波士顿房价数据,绘制房间数和房屋价格的折线图

2.2.1 代码实现

2.2.2 绘制结果

2.3 基于人员离职数据,绘制IT部部门员工工龄、年度评分折线图

2.3.1 代码实现

2.3.2 绘制结果

2.4 基于波士顿房价数据绘制热力图

2.4.1 代码实现

2.4.2 绘制结果

2.5 基于波士顿房价数据绘制犯罪率、一氧化氮含量、房间数与房屋价格两两之间的相关性

2.5.1 代码实现

2.5.2绘制结果

2.6 基于人员离职率数据,对销售部已离职的员工数据绘制不同颜色的数据子集

2.6.1 代码实现

2.6.2 绘制结果

2.7 根据销售部已离职的员工数据,通过relplot函数绘制单构面散点图

2.7.1 代码实现

2.7.2 绘制结果

2.8 根据部门为IT部的数据,传入分类变量薪资和工作事故到col和row中,绘制网格图

2.8.1 代码实现

2.8.2 绘制结果

三、使用seaborn绘制分类图

3.1基于离职率数据,使用barplot函数绘制各部门人员总数条形图

3.1.1 代码实现

3.1.2 绘制结果

3.2 基于人员离职率数据绘制x轴与y轴显示数据的计数图

3.2.1 代码实现

3.2.2 绘制结果

3.3 基于波士顿房价数据绘制单变量分布图

3.3.1 代码实现

3.3.2 绘制结果

3.4 基于人员离职率数据,绘制简单水平分布散点图分析销售部已离职的员工每月平均工作小时

3.4.1 代码实现

3.4.2 绘制结果

3.5 基于人员离职率数据,根据高薪在职的员工数据,使用swarmplot函数绘制简单的分布密度散点图

3.5.1 代码实现

3.5.2 绘制结果

3.6 波士顿房价数据绘制普通箱线图与增强箱线图

3.6.1 代码实现

3.6.2 绘制结果

3.7 基于波士顿房价数据,通过pairplot函数绘制多变量之间的关系图

3.7.1 代码实现

四、使用seaborn绘制回归图

4.1 基于波士顿房价数据,利用regplot函数绘制修改置信区间ci参数前后的线性回归拟合图

4.1.1 代码实现

4.1.2 绘制结果

4.2 基于波士顿房价数据,以河流穿行为类别绘制低收入人群与房屋价格两个变量的回归网格组合图

4.2.1 代码实现

4.2.2 绘制结果

end~

人的一生可能根本没有分明的四季,一直在光影斑驳的林子下走走停停。


一、绘制动态轨迹图

1.1 代码实现

# 导入必要库
from pyecharts.charts import Geo
from pyecharts.globals import ChartType
from pyecharts import options as opts# 修改已有的数据
z1 = [("四川省", "北京市"),("江西省", "西安市"),
]geo = (# 设置图形大小Geo(init_opts=opts.InitOpts(width="1200px", height="600px")).add_schema(# 地图类型为中国地图maptype="china",itemstyle_opts=opts.ItemStyleOpts(color="#99CCCC", border_color="black"),label_opts=opts.LabelOpts(is_show=True),).add("动态轨迹图 ",z1,# 参数设计label_opts=opts.LabelOpts(is_show=False),type_=ChartType.LINES,effect_opts=opts.EffectOpts(symbol_size=8, color="red"),linestyle_opts=opts.LineStyleOpts(curve=0.3),).set_global_opts(title_opts=opts.TitleOpts(title="动态轨迹图  author:张志豪  2024-4-8"))
)# 保存为图片
geo.render("geo_dynamic_trajectory.png")

1.2 绘制结果

二、使用seaborn绘制关系图

2.1 绘制散点图分析产品开发部已离职的员工的评分与平均工作时间

2.1.1 代码实现

from matplotlib import pyplot as plt
import pandas as pd
import seaborn as sns# 忽略警告
import warnings
warnings.filterwarnings('ignore')# 使用seaborn库绘图
sns.set_style('whitegrid', {'font.sans-serif':['simhei', 'Arial']})# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']# 加载数据
hr = pd.read_csv('hr.csv', encoding='gbk')# 提取部门为产品开发部、离职为1的数据
product = hr.iloc[(hr['部门'].values == '产品开发部') & (hr['离职'].values == 1), :]# 绘制评价分数与平均工作时间的散点图
ax = sns.scatterplot(x='评分', y='每月平均工作小时数(小时)', data=product)# 设置图表标题
plt.title('评价分数与平均工作时间散点图1 --张志豪')# 显示图表1
plt.show()markers = {'低': 'o', '中': 'D', '高': 's'}# 绘制评价分数与平均工作时间的散点图,并根据薪资水平使用不同的标记
sns.scatterplot(x='评分', y='每月平均工作小时数(小时)', hue='薪资', style='薪资', markers=markers, data=product)# 设置图表标题
plt.title('评价分数与平均工作时间散点图2 --张志豪')# 显示图表2
plt.show()

2.1.2 绘制结果

注:散点图2是在散点图1的基础上添加了第三个分类变量,可以通过对点着色(故称色调语义)和改变标记来显示分类变量,以突显每个类别。

2.2 基于波士顿房价数据,绘制房间数和房屋价格的折线图

2.2.1 代码实现

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']
# 加载数据
boston = pd.read_csv('boston_house_prices.csv', encoding='gbk')# 绘制折线图
sns.lineplot(x='房间数(间)', y='房屋价格(千美元)', data=boston, ci=0)# 添加标题和坐标轴标签
plt.title('房间数与房屋价格')
plt.xlabel('房间数(间)')
plt.ylabel('房屋价格(千美元)')# 显示图例
plt.legend(['房屋价格'], loc='upper left')# 显示图形
plt.show()

2.2.2 绘制结果

由下图可知,折线具有较大的波动性,但整体呈现向上的趋势,可以大致认为当房间数相对较少时,房屋价格也相对较低;当房间数相对较多时,房屋价格逐渐升高。

2.3 基于人员离职数据,绘制IT部部门员工工龄、年度评分折线图

2.3.1 代码实现

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']# 加载数据
hr = pd.read_csv('hr.csv', encoding='gbk')# 提取IT部门的数据
IT = hr[hr['部门'] == 'IT部']# 绘制折线图,修改线的颜色
sns.lineplot(x='工龄(年)', y='评分', hue='离职', data=IT, ci=0,color=['red', 'blue'], linewidth=2)# 添加标题和坐标轴标签
plt.title('工龄与上年度评价 --张志豪')
plt.xlabel('工龄(年)')
plt.ylabel('评分')# 显示图例
plt.legend(title='离职', loc='upper right')# 显示图形
plt.show()

2.3.2 绘制结果

2.4 基于波士顿房价数据绘制热力图

2.4.1 代码实现


import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns# 加载波士顿房价数据集
boston = pd.read_csv('boston_house_prices.csv', encoding='gbk')# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']
# 设置负号显示正常
plt.rcParams['axes.unicode_minus'] = False# 计算特征相关系数矩阵
corr = boston.corr()# 绘制热力图,添加数据标记
plt.figure(figsize=(4, 4)) # 设置合适的大小
sns.heatmap(corr, annot=True, fmt='.2f')# 添加标题
plt.title('特征矩阵热力图 --张志豪')# 显示图形
plt.show()

2.4.2 绘制结果

2.5 基于波士顿房价数据绘制犯罪率、一氧化氮含量、房间数与房屋价格两两之间的相关性

2.5.1 代码实现

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']
# 加载数据
boston = pd.read_csv('boston_house_prices.csv', encoding='gbk')# 绘制两两变量之间的相关性矩阵图
g = sns.PairGrid(boston, vars=['犯罪率', '一氧化氮含量(ppm)', '房间数(间)', '房屋价格(千美元)'])
g = g.map(plt.scatter)# 添加总标题
plt.suptitle('矩阵网格图 --张志豪', verticalalignment='bottom', y=0.98)# 显示图形
plt.show()

2.5.2绘制结果

2.6 基于人员离职率数据,对销售部已离职的员工数据绘制不同颜色的数据子集

2.6.1 代码实现

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']# 加载数据
hr = pd.read_csv('hr.csv', encoding='gbk')# 提取部门为销售部,离职为1的数据
sell = hr.loc[(hr['部门'].values == '销售部') & (hr['离职'].values == 1), :]# 设置图形大小
plt.figure(figsize=(10, 6))# 绘制矩阵网格图
g = sns.PairGrid(sell,vars=['满意度', '评分', '每月平均工作小时数(小时)'],hue='薪资', palette='Set3')
g = g.map_diag(sns.kdeplot)
g = g.map_offdiag(plt.scatter)# 添加总标题
plt.suptitle('不同颜色的矩阵网格图 --张志豪', verticalalignment='bottom', y=0.98)# 显示图形
plt.show()

2.6.2 绘制结果

2.7 根据销售部已离职的员工数据,通过relplot函数绘制单构面散点图

2.7.1 代码实现

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']# 加载数据
hr = pd.read_csv('hr.csv', encoding='gbk')# 提取部门为销售部,离职为1的数据
sell = hr.loc[(hr['部门'].values == '销售部') & (hr['离职'].values == 1), :]# 绘制单构面散点图
sns.relplot(x='满意度', y='评分', hue='薪资', data=sell)# 添加标题
plt.title('满意度水平与上年度评价',loc='center')# 显示图形
plt.show()

2.7.2 绘制结果

由图可知,在销售部部门且已经离职的员工中,人员评估分数越高,员工对公司的满意度越高。

2.8 根据部门为IT部的数据,传入分类变量薪资和工作事故到col和row中,绘制网格图

2.8.1 代码实现

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt# 加载数据
hr = pd.read_csv('hr.csv', encoding='gbk')# 提取部门为IT部的数据
IT = hr[hr['部门'] == 'IT部']# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']# 绘制第一个网格图
sns.relplot(x='满意度', y='评分', hue='5年内升职', row='薪资', col='工作事故', data=IT)
# 设置主标题
plt.suptitle('IT网格图1 -- 张志豪', y=0.99)
plt.show()# 绘制第二个网格图
sns.relplot(x='满意度', y='评分', hue='5年内升职', col='工作事故', col_wrap=1, data=IT)
# 设置主标题
plt.suptitle('IT网格图2 -- 张志豪', horizontalalignment='left', verticalalignment='bottom', x=0, y=0.98)# 显示图形
plt.show()# 显示图形
plt.show()plt.show()

2.8.2 绘制结果

注:这两个图的title设置花了较多时间,包括一些参数的设置

三、使用seaborn绘制分类图

3.1基于离职率数据,使用barplot函数绘制各部门人员总数条形图

3.1.1 代码实现

from matplotlib import pyplot as plt
import pandas as pd
import seaborn as sns
import math# 加载数据
boston = pd.read_csv('boston_house_prices.csv', encoding='gbk')
hr = pd.read_csv('hr.csv', encoding='gbk')# 使用seaborn库绘图
sns.set_style('whitegrid', {'font.sans-serif': ['simhei', 'Arial']})# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']# 计算各部门的人数并获取部门名称
count = hr['部门'].value_counts()
index = count.index# 绘制各部门人数的条形图
sns.barplot(x=count, y=index)# 设置x轴标签旋转角度
plt.xticks(rotation=45)# 设置x轴和y轴的标签
plt.xlabel('部门')
plt.ylabel('总数')# 设置图表标题
plt.title('各部门人数对比')# 显示图表
plt.show()

3.1.2 绘制结果

3.2 基于人员离职率数据绘制x轴与y轴显示数据的计数图

3.2.1 代码实现

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd# 设置中文字体和绘图风格
sns.set_style('whitegrid', {'font.sans-serif': ['simhei', 'Arial']})
# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']
# 加载数据
hr = pd.read_csv('hr.csv', encoding='gbk')# 创建一个新的图形窗口,并设置大小为宽8英寸,高4英寸
plt.figure(figsize=(8, 4))# 创建第一个子图(1行2列中的第1个)
plt.subplot(1, 2, 1)  # 子图参数为(行数, 列数, 子图索引)
# 绘制工龄(年)的计数图,并设置x轴标签
sns.countplot(x=hr['工龄(年)'])  # 使用列索引来引用数据
plt.title('x轴显示数据的计数图 --张志豪')  # 设置子图标题
plt.ylabel('计数')  # 设置y轴标签# 创建第二个子图(1行2列中的第2个)
plt.subplot(1, 2, 2)  # 子图参数为(行数, 列数, 子图索引)
# 绘制工龄(年)的计数图,并设置y轴标签
sns.countplot(y=hr['工龄(年)'])  # 使用列索引来引用数据
plt.title('y轴显示数据的计数图 --张志豪')  # 设置子图标题
plt.xlabel('计数')  # 设置x轴标签# 显示图表
plt.show()

3.2.2 绘制结果

由图可知,不同工龄的员工数量,其中工龄为3的员工数量最多,其次是工龄为2和4的,工龄为7、8、10的员工数量都相对较少,说明了公司员工在工作到一定时间后有离职的情况。

3.3 基于波士顿房价数据绘制单变量分布图

3.3.1 代码实现

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']
# 加载数据
boston = pd.read_csv('boston_house_prices.csv', encoding='gbk')# 使用seaborn库绘制单变量的分布图
sns.distplot(boston['财产税'], kde=False)# 设置图表标题
plt.title('单变量的分布图 --张志豪')# 设置y轴标签
plt.ylabel('数量')# 添加网格线
plt.grid(True)# 显示图表
plt.show()

3.3.2 绘制结果

由图可知,每1万美元的全额物业税率,即财产税,主要集中在200~400和600~700区间,且在200~400区间的数量相关较大。

3.4 基于人员离职率数据,绘制简单水平分布散点图分析销售部已离职的员工每月平均工作小时

3.4.1 代码实现

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt# 加载数据
hr = pd.read_csv('hr.csv', encoding='gbk')
# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']
# 提取部门为销售部、离职为1的数据
sale = hr.iloc[(hr['部门'].values == '销售部') & (hr['离职'].values == 1), :]# 使用seaborn库绘制简单水平分布散点图
sns.stripplot(x='每月平均工作小时数(小时)', data=sale)# 设置图表标题
plt.title('简单水平分布散点图 --张志豪')# 显示图表
plt.show()

3.4.2 绘制结果

3.5 基于人员离职率数据,根据高薪在职的员工数据,使用swarmplot函数绘制简单的分布密度散点图

3.5.1 代码实现

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']
# 加载数据
hr = pd.read_csv('hr.csv', encoding='gbk')# 创建一个新的图形窗口,并设置大小为宽10英寸,高13英寸
plt.figure(figsize=(10, 13))# 创建第一个子图(2行1列中的第1个)
plt.subplot(2, 1, 1)  # 子图参数为(行数, 列数, 子图索引)
# 设置x轴标签旋转角度
plt.xticks(rotation=70)
# 设置图表标题
plt.title('不同部门的平均每月工作时长 --张志豪')
# 使用seaborn库绘制带hue的简单水平分布散点图
sns.stripplot(x='部门', y='每月平均工作小时数(小时)', hue='5年内升职', data=hr)# 创建第二个子图(2行1列中的第2个)
plt.subplot(2, 1, 2)  # 子图参数为(行数, 列数, 子图索引)
# 设置x轴标签旋转角度
plt.xticks(rotation=70)
# 使用seaborn库绘制带hue和dodge的简单水平分布散点图
sns.stripplot(x='部门', y='每月平均工作小时数(小时)', hue='5年内升职', data=hr, dodge=True)# 显示图表
plt.show()

3.5.2 绘制结果

由图可知,在高薪在职的员工数据中,不同部门每个月平均工作时长和近五年是否得到提升。其中,销售部部门、管理部部门、市场部部门和财务部部门有少数员工提升,其他部门基本没有得到提升。

3.6 波士顿房价数据绘制普通箱线图与增强箱线图

3.6.1 代码实现

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import math# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode MS']# 加载数据
boston = pd.read_csv('boston_house_prices.csv', encoding='gbk')# 对房间数取整
boston['房间数(取整)'] = boston['房间数(间)'].map(math.floor)# 创建一个包含两个子图的图形窗口,设置大小为宽8英寸,高4英寸
fig, axes = plt.subplots(1, 2, figsize=(8, 4))# 第一个子图,绘制普通箱线图
axes[0].set_title('普通箱线图 --张志豪')  # 设置子图标题
sns.boxplot(x='房间数(取整)', y='房屋价格(千美元)', data=boston, orient='v', ax=axes[0])  # 绘制箱线图# 第二个子图,绘制增强箱线图
axes[1].set_title('增强箱线图 --张志豪')  # 设置子图标题
sns.boxenplot(x='房间数(取整)', y='房屋价格(千美元)', data=boston, orient='v', ax=axes[1])  # 绘制增强箱线图# 显示图表
plt.show()

3.6.2 绘制结果

由图可知,房间数目与房价有密切关系,房间数目少,房价低;房间数目多,则房价就明显升高。增强箱线图显示更广的分位数,并通过宽度展示出对应的分布,从而接纳了更多的异常值信息,减少了信息损失。

3.7 基于波士顿房价数据,通过pairplot函数绘制多变量之间的关系图

3.7.1 代码实现

1.import seaborn as sns
2.import matplotlib.pyplot as plt
3.import pandas as pd
4.
5.# 设置中文字体
6.plt.rcParams['font.family'] = ['Arial Unicode Ms']
7.
8.# 加载数据
9.boston = pd.read_csv('boston_house_prices.csv', encoding='gbk')
10.
11.# 使用seaborn库绘制多变量散点图
12.sns.pairplot(boston[['犯罪率', '一氧化氮含量(ppm)', '房间数(间)', '低收入人群', '房屋价格(千美元)']])
13.
14.# 设置图表标题
15.plt.suptitle('多变量散点图 --张志豪', verticalalignment='bottom', y=0.98)
16.
17.# 显示图表
18.plt.show()

3.7.2 绘制结果

由图可知,犯罪率、一氧化氮含量、房间数、低收入人群、房屋价格几个字段的两两之间的相关关系,以及在对角线上显示了犯罪率、一氧化氮含量、房间数、低收入人群、房屋价格的分布情况。

四、使用seaborn绘制回归图

4.1 基于波士顿房价数据,利用regplot函数绘制修改置信区间ci参数前后的线性回归拟合图

4.1.1 代码实现

import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
import warnings# 设置中文字体
sns.set_style('whitegrid', {'font.sans-serif': ['SimHei', 'Arial']})
# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']
# 忽略警告
warnings.filterwarnings('ignore')# 加载数据
boston = pd.read_csv('boston_house_prices.csv', encoding='gbk')fig, axes = plt.subplots(1, 2, figsize=(12, 6))
# 设置主标题
plt.suptitle('线性拟合图 -张志豪', y=0.99)
axes[0].set_title('修改前的线性回归拟合图')
axes[1].set_title('修改后的线性回归拟合图')sns.regplot(x='房间数(间)', y='房屋价格(千美元)', data=boston, ax=axes[0])
sns.regplot(x='房间数(间)', y='房屋价格(千美元)', data=boston, ci=50, ax=axes[1])plt.show()

4.1.2 绘制结果

由图可知,房间数和房屋价格成线性相关关系。其中,修改置信区间ci参数前后得到的线性回归拟合图一致,准确度也不相同。

4.2 基于波士顿房价数据,以河流穿行为类别绘制低收入人群与房屋价格两个变量的回归网格组合图

4.2.1 代码实现

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt# 加载数据
boston = pd.read_csv('boston_house_prices.csv', encoding='gbk')
# 设置中文字体
plt.rcParams['font.family'] = ['Arial Unicode Ms']
# 绘制回归网格组合图
sns.lmplot(x='低收入人群', y='房屋价格(千美元)', hue='河流穿行', data=boston, aspect=1.5)
plt.title('低收入人群与房屋价格回归网格组合图 --张志豪')
plt.xlabel('低收入人群')
plt.ylabel('房屋价格(千美元)')
plt.show()

4.2.2 绘制结果

由图可知,无论是否被河流穿过,变量低收入人群与变量房屋价格呈现较密切的线性拟合趋势,且绝大部分都是分布在未被河流穿过的情况下。

end~

人的一生可能根本没有分明的四季,一直在光影斑驳的林子下走走停停。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/354907.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis 缓存jwt令牌设置更新时间 BUG修复

大家好,今天我又又又来了,hhhhh。 上文中 我们永redis缓存了token 但是我们发现了 一个bug ,redis中缓存的token 是单用户才能实现的。 就是 我 redis中存储的键 名 为token 值 是jwt令牌 ,但是如果 用户a 登录 之后 创建一个…

区间预测 | Matlab实现EVO-CNN-SVM能量谷算法优化卷积神经网络支持向量机结合核密度估计多置信区间多变量回归区间预测

区间预测 | Matlab实现EVO-CNN-SVM能量谷算法优化卷积神经网络支持向量机结合核密度估计多置信区间多变量回归区间预测 目录 区间预测 | Matlab实现EVO-CNN-SVM能量谷算法优化卷积神经网络支持向量机结合核密度估计多置信区间多变量回归区间预测效果一览基本介绍程序设计参考资…

【Ubuntu通用压力测试】Ubuntu16.04 CPU压力测试

使用 stress 对CPU进行压力测试 我也是一个ubuntu初学者,分享是Linux的优良美德。写的不好请大佬不要喷,多谢支持。 sudo apt-get update 日常先更新再安装东西不容易出错 sudo apt-get upgrade -y 继续升级一波 sudo apt-get install -y linux-tools…

【尚庭公寓SpringBoot + Vue 项目实战】移动端登录管理(二十)

【尚庭公寓SpringBoot Vue 项目实战】移动端登录管理(二十) 文章目录 【尚庭公寓SpringBoot Vue 项目实战】移动端登录管理(二十)1、登录业务2、接口开发2.1、获取短信验证码2.2、登录和注册接口2.3、查询登录用户的个人信息 1、…

后端学习笔记:Python基础

后端学习笔记:Python基础 数据类型: Python中主要有以下几种常用的基本数据类型: String 字符串类型,用单引号或者双引号引用Number 数字类型,包括浮点数,整数,长整数和复数List 列表项&…

ENVI实战—一文搞定非监督分类

实验1:使用isodata法分类 目的:学会使用isodata法开展非监督分类 过程: ①导入影像:打开ENVI,按照“文件→打开为→光学传感器→ESA→Sentinel-2”的顺序,打开实验1下载的哨兵2号数据。 图1 ②区域裁剪…

Hbase搭建教程

Hbase搭建教程 期待您的关注 ☀小白的Hbase学习笔记 目录 Hbase搭建教程 1.上传hbase的jar包并解压 2.重新登录 3.启动zookeeper 4.配置环境变量 5.关闭ZK的默认配置 6.修改hbase-site.xml文件 7.修改regionservers文件 8.将配置好的文件分发给其它节点 9.配置环境变量…

PyCharm新手入门

前言 在之前《Python集成开发工具的选择》一文中介绍了python初学者可以使用Jupyter Notebook,Jupyter Notebook简单易用,可以用来练习代码编写,但是实际生产开发环境使用这个工具是远远不够用的,因为实际软件开发中需要软件调试…

LabVIEW程序闪退问题

LabVIEW程序出现闪退问题可能源于多个方面,包括软件兼容性、内存管理、代码质量、硬件兼容性和环境因素。本文将从这些角度进行详细分析,探讨可能的原因和解决方案,并提供预防措施,以帮助用户避免和解决LabVIEW程序闪退的问题。 1…

软考高级论文真题“论大数据lambda架构”

论文真题 大数据处理架构是专门用于处理和分析巨量复杂数据集的软件架构。它通常包括数据收集、存储、处理、分析和可视化等多个层面,旨在从海量、多样化的数据中提取有价值的信息。Lambda架构是大数据平台里最成熟、最稳定的架构,它是一种将批处理和流…

前端锚点 点击 滑动双向绑定

一. 页面样式 二. 代码 <div class"flexBox"><div class"mdDiv" v-for"(item,index) in tabList" :key"index" :class"nowChooseindex?choosed:" click"jumpMD(index, item.id)">{{item.name}}&l…

C++ 实现HTTP的客户端、服务端demo和HTTP三方库介绍

本文使用C模拟实现http的客户端请求和http的服务端响应功能&#xff0c;并介绍几种封装HTTP协议的三方库。 1、实现简单HTTP的服务端功能 本程序使用C tcp服务端代码模拟HTTP的服务端&#xff0c;服务端返回给客户端的消息内容按照HTTP协议的消息响应格式进行了组装。 demo如…

Apipost模拟HTTP客户端

目录 APIFOX的站内下载&#xff1a; Apipost模拟HTTP客户端&#xff08;正文&#xff09; 新建窗口 添加服务器地址、头信息介绍 添加请求体 发送以及返回状态 模拟HTTP客户端的软件有很多&#xff0c;其中比较著名的就有API-FOX、POSTMAN。 相信很多小伙伴都使用POSTMAN…

Maya 2024 mac/win版:创意无界,设计新生

Maya 2024是一款由Autodesk推出的业界领先的三维计算机图形软件&#xff0c;广泛应用于电影、游戏、广告等创意产业。这款软件以其强大的功能和卓越的性能&#xff0c;为艺术家们提供了一个实现创意梦想的平台。 Maya 2024 mac/win版获取 在建模方面&#xff0c;Maya 2024提供…

Flutter 自定义日志模块设计

前言 村里的老人常说&#xff1a;“工程未动&#xff0c;日志先行。” 有效的利用日志&#xff0c;能够显著提高开发/debug效率&#xff0c;否则程序运行出现问题时可能需要花费大量的时间去定位错误位置和出错原因。 然而一个复杂的项目往往需要打印日志的地方比较多&#…

YOLOv10改进 | Conv篇 |YOLOv10引入SPD-Conv卷积

1. SPD-Conv介绍 1.1 摘要:卷积神经网络(CNN)在图像分类和目标检测等许多计算机视觉任务中取得了巨大的成功。 然而,在图像分辨率较低或物体较小的更艰巨的任务中,它们的性能会迅速下降。 在本文中,我们指出,这源于现有 CNN 架构中一个有缺陷但常见的设计,即使用跨步卷…

【github】项目的代码仓库重命名

问题 有时候&#xff0c;我们先创建了远端项目仓库&#xff0c;然后就把相关code上传到远端项目仓库。 可能需要结合实际情况对远端项目仓库进行重命名。 当前仓库名称v_ttc&#xff0c;如何将他修改成v_datejs 操作步骤 1、在 GitHub.com 上&#xff0c;导航到存储库的主页…

【云原生】Kubernetes----Metrics-Server组件与HPA资源

目录 引言 一、概述 &#xff08;一&#xff09;Metrics-Server简介 &#xff08;二&#xff09;Metrics-Server的工作原理 &#xff08;三&#xff09;HPA与Metrics-Server的作用 &#xff08;四&#xff09;HPA与Metrics-Server的关系 &#xff08;五&#xff09;HPA与…

java面向对象(上)

一.面向对象与面向过程 1.面向过程 面向过程(procedure Oriented Programming),简称POP,主要思想就是将问题分解成一个个步骤去解决,把这个步骤称为函数. 典型语言:C语言 优点:可以大大简化代码 缺点:当代码量过大时,不方便维护 2.面向对象 面向对象(Object Oriented Pr…

【C语言】手写学生管理系统丨附源码+教程

最近感觉大家好多在忙C语言课设~ 我来贡献一下&#xff0c;如果对你有帮助的话谢谢大家的点赞收藏喔&#xff01; 1. 项目分析 小白的神级项目&#xff0c;99%的程序员&#xff0c;都做过这个项目&#xff01; 掌握这个项目&#xff0c;就基本掌握 C 语言了&#xff01; 跳…