傅里叶级数在不连续点会怎么样???

文章目录

  • 一、前言背景
  • 二、用狄利克雷核表达傅里叶级数
  • 三、狄利克雷核与狄拉克函数
  • 四、傅里叶级数在不连续点的表示
  • 五、吉伯斯现象的解释
  • 六、总结
  • 参考资料

一、前言背景

笔者最近在撸《信号与系统》,写下此博客用作记录和分享学习笔记。由于是笔者为电子爱好者,不是数学专业从事人员,如有不对还望各网友大神指正。本博客大量借鉴资料,笔者只是拾人牙慧的小屁孩。
笔者在学习傅里叶级数或者傅里叶变换时,对傅里叶级数或是傅里叶变换的收敛性颇有疑问。
有狄利克雷条件约束:

  1. 在任何周期内, x ( t ) x(t) x(t)必须绝对可积( ∫ T ∣ x ( t ) ∣ d t < ∞ \int_{T}{|x(t)|}dt < \infty Tx(t)dt<),以此保证傅里叶级数系数 a k a_{k} ak都是有限值:
    ∣ a k ∣ ≤ 1 T ∫ T ∣ x ( t ) e − j k w 0 t ∣ d t = 1 T ∫ T ∣ x ( t ) ∣ d t < ∞ |a_{k}| \leq \frac{1}{T} \int_{T} |x(t)e^{-jkw_{0}t}|dt = \frac{1}{T} \int_{T} |x(t)|dt < \infty akT1Tx(t)ejkw0tdt=T1Tx(t)dt<
  2. 在任意有限区间内, x ( t ) x(t) x(t)具有有限个起伏变化;也就是说,在任何单个周期内, x ( t ) x(t) x(t)的最大值和最小值的数目有限。
  3. 在任意有限区间内,只有有限个不连续点,而且在这些不连续点上,函数是有限值。

其中说到,对于一个周期内存在的有限数目的不连续点的周期信号而言,除去那些孤立的不连续点外,其余所有点上傅里叶级数都等于原来的 x ( t ) x(t) x(t);而在那些孤立的不连续点上,傅里叶级数收敛于不连续点处的平均值。

方波

这句话令笔者十分疑惑——傅里叶级数还能对不连续的信号的进行处理?
按照道理说,傅里叶级数由正弦和余弦函数构成,这些函数本质上是平滑的、连续的,怎么能表达不连续的信号呢?
于是我们展开下文…

二、用狄利克雷核表达傅里叶级数

我们都知道一个周期信号可以被傅里叶级数展开,
x ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t x(t) = \sum\limits_{k = -\infty}^{+\infty}a_{k}e^{jkw_{0}t} x(t)=k=+akejkw0t
对于存在不连续点的 x ( t ) x(t) x(t),我们似乎难以下手,只能使用极限的知识。
现在以一个方波为例,
x ( t ) = { 1 , ∣ t ∣ < T 1 0 , T 1 < ∣ t ∣ < T 2 x(t)=\left\{ \begin{aligned} 1 , & |t| < T_{1}\\ 0 , & T_{1} < |t| < \frac{T}{2} \end{aligned} \right. x(t)= 1,0,t<T1T1<t<2T
我们对 T 1 T_{1} T1 处取极限,
lim ⁡ t → T 1 x ( t ) = lim ⁡ t → T 1 ∑ k = − ∞ + ∞ a k e j k w 0 t = ∑ k = − ∞ + ∞ a k e j k w 0 T 1 \lim \limits_{t \rightarrow T_{1}} x(t) = \lim \limits_{t \rightarrow T_{1}} \sum\limits_{k = -\infty}^{+\infty}a_{k}e^{jkw_{0}t} = \sum\limits_{k = -\infty}^{+\infty}a_{k}e^{jkw_{0} T_{1}} tT1limx(t)=tT1limk=+akejkw0t=k=+akejkw0T1
我们可以发现,由于这个方波满足狄利克雷条件,求和( ∑ k = − ∞ + ∞ \sum\limits_{k = -\infty}^{+\infty} k=+)以及傅里叶级数系数( a k a_{k} ak)都收敛,故 lim ⁡ t → T 1 x ( t ) < ∞ \lim \limits_{t \rightarrow T_{1}} x(t) < \infty tT1limx(t)<。(当然, lim ⁡ t → T 1 − x ( t ) = 0 \lim \limits_{t \rightarrow T_{1}^{-}} x(t) = 0 tT1limx(t)=0 lim ⁡ t → T 1 + x ( t ) = 1 \lim \limits_{t \rightarrow T_{1}^{+}} x(t) = 1 tT1+limx(t)=1

这真是一个amazing的结果,这说明一个满足狄利克雷条件的周期信号,本来有不连续点,但利用傅里叶级数展开式可以得到其收敛值。
我们尝试计算:
x ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t x ( t ) = ∑ k = − ∞ + ∞ ( 1 T ∫ T x ( τ ) e − j k w 0 τ d τ ) e j k w 0 t x ( t ) = 1 T ∫ T x ( τ ) ∑ k = − ∞ + ∞ e j k w 0 ( t − τ ) d τ \begin{aligned} x(t) & = \sum\limits_{k = -\infty}^{+\infty}a_{k}e^{jkw_{0}t} \\ x(t) & = \sum\limits_{k = -\infty}^{+\infty}(\frac{1}{T}\int_{T}x(\tau)e^{-jkw_{0}\tau}d\tau)e^{jkw_{0}t} \\ x(t) & = \frac{1}{T} \int_{T} x(\tau) \sum\limits_{k = -\infty}^{+\infty}e^{jkw_{0}(t -\tau)}d\tau \end{aligned} x(t)x(t)x(t)=k=+akejkw0t=k=+(T1Tx(τ)ejkw0τdτ)ejkw0t=T1Tx(τ)k=+ejkw0(tτ)dτ

这里我们引入狄利克雷核:
D N ( t ) = ∑ k = − N + N e j k t = ∑ k = − N + N ( cos ⁡ ( k t ) + j sin ⁡ ( k t ) ) = ∑ k = − N + N cos ⁡ ( k t ) + j ∑ k = − N − 1 sin ⁡ ( k t ) + j ∑ k = 1 N sin ⁡ ( k t ) + j sin ⁡ ( 0 ) = ∑ k = − N + N cos ⁡ ( k t ) + j ∑ k = 1 N sin ⁡ ( − k t ) + j ∑ k = 1 N sin ⁡ ( k t ) + 0 = ∑ k = − N + N cos ⁡ ( k t ) − j ∑ k = 1 N sin ⁡ ( k t ) + j ∑ k = 1 N sin ⁡ ( k t ) = ∑ k = − N + N cos ⁡ ( k t ) \begin{aligned} D_{N}(t) = \sum\limits_{k = -N}^{+N}e^{jkt} &= \sum\limits_{k = -N}^{+N} (\cos (kt) + j \sin (kt)) \\ &= \sum\limits_{k = -N}^{+N} \cos (kt) + j \sum\limits_{k = -N}^{-1} \sin (kt)+ j \sum\limits_{k = 1}^{N} \sin (kt) + j \sin (0)\\ &= \sum\limits_{k = -N}^{+N} \cos (kt) + j \sum\limits_{k = 1}^{N} \sin (-kt)+ j \sum\limits_{k = 1}^{N} \sin (kt) + 0\\ &= \sum\limits_{k = -N}^{+N} \cos (kt) - j \sum\limits_{k = 1}^{N} \sin (kt)+ j \sum\limits_{k = 1}^{N} \sin (kt) \\ &= \sum\limits_{k = -N}^{+N} \cos (kt) \\ \end{aligned} DN(t)=k=N+Nejkt=k=N+N(cos(kt)+jsin(kt))=k=N+Ncos(kt)+jk=N1sin(kt)+jk=1Nsin(kt)+jsin(0)=k=N+Ncos(kt)+jk=1Nsin(kt)+jk=1Nsin(kt)+0=k=N+Ncos(kt)jk=1Nsin(kt)+jk=1Nsin(kt)=k=N+Ncos(kt)
又因为 2 sin ⁡ α cos ⁡ β = sin ⁡ ( α + β ) + sin ⁡ ( α − β ) 2 \sin \alpha \cos \beta = \sin ( \alpha + \beta) + \sin ( \alpha - \beta) 2sinαcosβ=sin(α+β)+sin(αβ)
我们有
2 sin ⁡ ( t 2 ) cos ⁡ ( k t ) = sin ⁡ ( t 2 + k t ) + sin ⁡ ( t 2 − k t ) ∑ k = − N + N 2 sin ⁡ ( t 2 ) cos ⁡ ( k t ) = ∑ k = − N + N sin ⁡ ( t 2 + k t ) + sin ⁡ ( t 2 − k t ) ∑ k = − N + N 2 sin ⁡ ( t 2 ) cos ⁡ ( k t ) = ∑ k = − N + N sin ⁡ ( k t + t 2 ) − sin ⁡ ( k t − t 2 ) ∑ k = − N + N 2 sin ⁡ ( t 2 ) cos ⁡ ( k t ) = [ sin ⁡ ( − N t + t 2 ) − sin ⁡ ( − N t − t 2 ) + sin ⁡ ( − ( N − 1 ) t + t 2 ) − sin ⁡ ( − ( N − 1 ) t − t 2 ) + . . . + 2 sin ⁡ ( t 2 ) + . . . + sin ⁡ ( N t + t 2 ) − sin ⁡ ( N t − t 2 ) ] ∑ k = − N + N 2 sin ⁡ ( t 2 ) cos ⁡ ( k t ) = − sin ⁡ ( − N t − t 2 ) − sin ⁡ ( t 2 ) + 2 sin ⁡ ( t 2 ) + sin ⁡ ( N t + t 2 ) − sin ⁡ ( t 2 ) ∑ k = − N + N 2 sin ⁡ ( t 2 ) cos ⁡ ( k t ) = 2 sin ⁡ ( N t + t 2 ) ∑ k = − N + N cos ⁡ ( k t ) = 2 sin ⁡ ( N t + t 2 ) 2 sin ⁡ ( t 2 ) ∑ k = − N + N cos ⁡ ( k t ) = sin ⁡ ( ( N + 1 2 ) t ) sin ⁡ ( t 2 ) \begin{aligned} 2 \sin (\frac{t}{2}) \cos (kt) &= \sin (\frac{t}{2} + kt) + \sin (\frac{t}{2} - kt) \\ \sum\limits_{k = -N}^{+N} 2 \sin (\frac{t}{2}) \cos (kt) &= \sum\limits_{k = -N}^{+N} \sin (\frac{t}{2} + kt) + \sin (\frac{t}{2} - kt) \\ \sum\limits_{k = -N}^{+N} 2 \sin (\frac{t}{2}) \cos (kt) &= \sum\limits_{k = -N}^{+N} \sin (kt + \frac{t}{2}) - \sin (kt - \frac{t}{2}) \\ \sum\limits_{k = -N}^{+N} 2 \sin (\frac{t}{2}) \cos (kt) &= [\sin (- Nt + \frac{t}{2}) - \sin (-Nt -\frac{t}{2}) +\sin (- (N-1)t + \frac{t}{2}) - \sin (-(N-1)t -\frac{t}{2}) + ... + 2 \sin (\frac{t}{2}) + ... + \sin (Nt + \frac{t}{2}) - \sin (Nt -\frac{t}{2})] \\ \sum\limits_{k = -N}^{+N} 2 \sin (\frac{t}{2}) \cos (kt) &= - \sin (-Nt -\frac{t}{2}) - \sin (\frac{t}{2}) + 2 \sin (\frac{t}{2}) + \sin (Nt + \frac{t}{2}) - \sin (\frac{t}{2}) \\ \sum\limits_{k = -N}^{+N} 2 \sin (\frac{t}{2}) \cos (kt) &= 2 \sin (Nt +\frac{t}{2}) \\ \sum\limits_{k = -N}^{+N} \cos (kt) &= \frac{ 2 \sin (Nt +\frac{t}{2})}{2 \sin (\frac{t}{2}) } \\ \sum\limits_{k = -N}^{+N} \cos (kt) &= \frac{ \sin ((N + \frac{1}{2})t)}{ \sin (\frac{t}{2}) } \end{aligned} 2sin(2t)cos(kt)k=N+N2sin(2t)cos(kt)k=N+N2sin(2t)cos(kt)k=N+N2sin(2t)cos(kt)k=N+N2sin(2t)cos(kt)k=N+N2sin(2t)cos(kt)k=N+Ncos(kt)k=N+Ncos(kt)=sin(2t+kt)+sin(2tkt)=k=N+Nsin(2t+kt)+sin(2tkt)=k=N+Nsin(kt+2t)sin(kt2t)=[sin(Nt+2t)sin(Nt2t)+sin((N1)t+2t)sin((N1)t2t)+...+2sin(2t)+...+sin(Nt+2t)sin(Nt2t)]=sin(Nt2t)sin(2t)+2sin(2t)+sin(Nt+2t)sin(2t)=2sin(Nt+2t)=2sin(2t)2sin(Nt+2t)=sin(2t)sin((N+21)t)

故,我们可以得出狄利克雷核的表达式为:
D N ( t ) = ∑ k = − N + N e j k t = ∑ k = − N + N cos ⁡ ( k t ) = sin ⁡ ( ( N + 1 2 ) t ) sin ⁡ ( t 2 ) D_{N}(t) = \sum\limits_{k = -N}^{+N}e^{jkt} = \sum\limits_{k = -N}^{+N} \cos (kt) = \frac{ \sin ((N + \frac{1}{2})t)}{ \sin (\frac{t}{2}) } DN(t)=k=N+Nejkt=k=N+Ncos(kt)=sin(2t)sin((N+21)t)
我们重新看回傅里叶级数表达的 x ( t ) x(t) x(t),用狄利克雷核表达也就是:
x ( t ) = 1 T ∫ T x ( τ ) ∑ k = − ∞ + ∞ e j k w 0 ( t − τ ) d τ x ( t ) = 1 T ∫ T x ( τ ) D N ( w 0 ( t − τ ) ) d τ \begin{aligned} x(t) & = \frac{1}{T} \int_{T} x(\tau) \sum\limits_{k = -\infty}^{+\infty}e^{jkw_{0}(t -\tau)}d\tau \\ x(t) & = \frac{1}{T} \int_{T} x(\tau) D_N(w_{0}(t-\tau)) d\tau \end{aligned} x(t)x(t)=T1Tx(τ)k=+ejkw0(tτ)dτ=T1Tx(τ)DN(w0(tτ))dτ
其中 N → ∞ N \rightarrow \infty N
我们可以发现, x ( t ) x(t) x(t)的傅里叶级数展开又可以看作和狄利克雷核作周期卷积。

三、狄利克雷核与狄拉克函数

上文提到的 x ( t ) x(t) x(t)的傅里叶级数展开可以表达为 x ( t ) x(t) x(t)自己和狄利克雷核( N → ∞ N \rightarrow \infty N时)作周期卷积,于是我们对狄利克雷核展开研究,看看是否具有什么优秀的性质能够简化我们的卷积计算。

使用MATLAB绘制狄利克雷核的图像:

N = 10;
t = -5 : 0.000001 : 5;
x = sin((N + 0.5) * t) ./ (t * 0.5);plot(t, x);
title("Dirichlet Kernel (N = " + N + ")");

调节N系数绘制图形:

N = 10 :

Dirchlet (N = 10)

N = 100 :

Dirchlet (N = 100)

N = 100000 :

Dirchlet (N = 100000)

可以看出狄利克雷核在 N N N越大,其性质越像狄拉克函数 δ ( t ) \delta(t) δ(t)
lim ⁡ t → 0 D N ( t ) = 2 N + 1 \lim \limits_{t \rightarrow 0} D_{N}(t)= 2N + 1 t0limDN(t)=2N+1
而且
∫ T D N ( w 0 t ) d t = ∫ T ∑ k = − N + N e j k w 0 t d t = ∑ k = − N + N ∫ T e j k w 0 t d t \int_{T} D_{N}(w_{0}t)dt = \int_{T} \sum\limits_{k = -N}^{+N}e^{jkw_{0}t}dt =\sum\limits_{k = -N}^{+N} \int_{T} e^{jkw_{0}t}dt TDN(w0t)dt=Tk=N+Nejkw0tdt=k=N+NTejkw0tdt
∫ T e j k w 0 t d t \int_{T} e^{jkw_{0}t}dt Tejkw0tdt 仅在 k = 0 k = 0 k=0 时不为零,
故,我们可推出,
∫ T D N ( w 0 t ) d t = ∫ T d t = T \int_{T} D_{N}(w_{0}t)dt = \int_{T} dt = T TDN(w0t)dt=Tdt=T
这两条推论可以得出: N N N越大,狄利克雷核在 0 0 0 处的趋于值越大( 2 N + 1 2N + 1 2N+1);狄利克雷核在一个周期积分其值固定( T T T)。
我们推理,当 N → ∞ N \rightarrow \infty N,狄利克雷核在 0 0 0 处也趋于 ∞ \infty ,但是由于狄利克雷核在一个周期积分其值固定为 T T T,所以相当于全部的能量都聚集到了 0 0 0 处,性质十分类似狄拉克函数 δ ( t ) \delta(t) δ(t)

比如就可以说,当 N → ∞ N \rightarrow \infty N ∫ T x ( t ) D N ( w 0 t ) d t = T x ( 0 ) \int_{T} x(t)D_{N}(w_{0}t)dt = Tx(0) Tx(t)DN(w0t)dt=Tx(0)

四、傅里叶级数在不连续点的表示

刚刚我们知道了狄利克雷核在 N → ∞ N \rightarrow \infty N下的性质近似狄拉克函数的性质,于是我们重新看回我们之前提到的 x ( t ) x(t) x(t)的傅里叶级数展开可以表达为 x ( t ) x(t) x(t)自己和狄利克雷核( N → ∞ N \rightarrow \infty N时)的周期卷积。
N → ∞ N \rightarrow \infty N时,不存在不连续点时,
x ( t ) = lim ⁡ N → ∞ 1 T ∫ T x ( τ ) D N ( w 0 ( t − τ ) ) d τ = 1 T ⋅ T x ( t ) = x ( t ) \begin{aligned} x(t) & = \lim \limits_{N \rightarrow \infty} \frac{1}{T} \int_{T} x(\tau) D_N(w_{0}(t-\tau)) d\tau = \frac{1}{T} \cdot T x(t) = x(t) \end{aligned} x(t)=NlimT1Tx(τ)DN(w0(tτ))dτ=T1Tx(t)=x(t)
可以发现,傅里叶级数展开式 x ( t ) x(t) x(t)就是其 x ( t ) x(t) x(t)本身。

而存在不连续点( t 0 t_{0} t0)时,我们就改变积分区间,去掉不连续点处(不连续点实际上是一个点,那么它对应的面积是一条线的面积也就是 0 0 0,因此,不连续点对面积的影响可以忽略不计),
x ( t 0 ) = lim ⁡ N → ∞ 1 T ∫ − T 2 t 0 − ε x ( τ ) D N ( w 0 ( t 0 − τ ) ) d τ + lim ⁡ N → ∞ 1 T ∫ t 0 + ε T 2 x ( τ ) D N ( w 0 ( t 0 − τ ) ) d τ = 1 T ⋅ T 2 x ( t 0 − ) + 1 T ⋅ T 2 x ( t 0 + ) = x ( t 0 − ) + x ( t 0 + ) 2 \begin{aligned} x(t_{0}) & = \lim \limits_{N \rightarrow \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{t_{0} - \varepsilon } x(\tau) D_N(w_{0}(t_{0}-\tau)) d\tau + \lim \limits_{N \rightarrow \infty} \frac{1}{T} \int_{t_{0} + \varepsilon}^{\frac{T}{2}} x(\tau) D_N(w_{0}(t_{0}-\tau)) d\tau \\ &= \frac{1}{T} \cdot \frac{T}{2} x(t_{0}^{-}) + \frac{1}{T} \cdot \frac{T}{2} x(t_{0}^{+})\\ &= \frac{ x(t_{0}^{-}) + x(t_{0}^{+})}{2} \end{aligned} x(t0)=NlimT12Tt0εx(τ)DN(w0(t0τ))dτ+NlimT1t0+ε2Tx(τ)DN(w0(t0τ))dτ=T12Tx(t0)+T12Tx(t0+)=2x(t0)+x(t0+)
最后我们得出,满足狄利克雷条件的周期函数,在其不连续点处会趋于不连续点的平均值。

将方波傅里叶级数展开后,再以对应的 N N N 画出其对应的有限项近似 x N ( t ) x_{N}(t) xN(t)
对于任意的 N N N 来说, x N ( t ) x_{N}(t) xN(t) 在不连续点都为该点平均值。
方波傅里叶级数的收敛

五、吉伯斯现象的解释

不过,在时域上有趣的现象不仅是满足狄利克雷条件的周期函数,在其不连续点处会趋于不连续点的平均值,还有当傅里叶级数为有限项的傅里叶级数截断近似时,在不连续点处呈现的起伏。

对于一周期方波,
x ( t ) = { 1 , ∣ t ∣ < T 1 0 , T > ∣ t ∣ > T 1 x(t)=\left\{ \begin{aligned} 1 , & |t| < T_{1}\\ 0 , & T>|t| > T_{1} \end{aligned} \right. x(t)={1,0,t<T1T>t>T1

其傅里叶级数为
a k = s i n ( k w 0 T 1 ) k π a_{k} =\frac{sin(kw_{0}T_{1})}{k \pi} ak=sin(kw0T1)

我们编写MATLAB代码,模拟有限项求和傅里叶级数的结果:

N = 50;T = 2 * pi; 
w0 = 2 * pi / T;
t = -3:0.00001:3;
T1 = 1;y = (abs(t) < T1);x = zeros(size(t));for k = -N:Nif k == 0ak = w0 * T1 / pi;elseak = (sin(k * w0 * T1)) / (k * pi);endx = x + ak * exp(1j * k * w0 * t);
endhold on;
plot(t, real(x), 'b');
plot(t, y);
title("N = " + N);
hold off;[max_value, max_index] = max(real(x));
overshoot = (max_value - 1) / 1 * 100; 
disp(['Maximum value: ', num2str(max_value)]);
disp(['Overshoot percentage: ', num2str(overshoot), '%']);

N=10有限项傅里叶级数

N=50有限项傅里叶级数
N=500有限项傅里叶级数

可以发现随着 N 的变大不连续点起伏的峰值大小没有改变太多,始终存在过冲,并没有随着N 的变大而下降。

这原因可以追溯到狄利克雷核中,虽然随着 N 的变大,狄利克雷核的性质越来越类似狄拉克函数 δ ( t ) \delta(t) δ(t) 的性质,但其图像却很有自己的特色。
狄利克雷核的图形由一个主要的中心峰(主瓣)和多对对称的较小振荡(旁瓣)组成。主瓣的高度随着 N 的增大而增大,旁瓣则在靠近 t = 0 t = 0 t=0 处密集振荡。旁瓣的振幅虽然逐渐减小,但振荡的频率随 N 的增大而增大。狄利克雷核的积分贡献主要来自主瓣的中心区域以及旁瓣的高频振荡。
t 0 t_{0} t0 是连续点时,积分结果会随着 N N N 的增大逐渐逼近 x ( t 0 ) x(t_{0}) x(t0)。( lim ⁡ N → ∞ 1 T ∫ T x ( τ ) D N ( w 0 ( t − τ ) ) d τ \lim \limits_{N \rightarrow \infty} \frac{1}{T} \int_{T} x(\tau) D_N(w_{0}(t-\tau)) d\tau NlimT1Tx(τ)DN(w0(tτ))dτ 趋于 x ( t ) x(t) x(t) )狄利克雷核的主瓣捕捉到了主要变化,旁瓣的高频成分对平滑变化的函数影响较小。(可以想象狄利克雷核卷积的过程,由于连续点周围的点都变化不大,当 N N N 很大时,旁瓣的影响十分细微)
但是当 t 0 t_{0} t0 是不连续点时,这个积分结果将很受旁瓣的高频振荡的影响,(因为不连续点周围的点变化很大,导致这个振荡表现得更加明显),出现过冲。(资料上说这个过冲将会有 9 9 9 %,且不随 N N N 的增大而下降)

编写MATLAB代码,实现对连续信号和不连续信号分别对狄利克雷核的周期卷积:

N = 50;
t = -pi:0.00001:pi;D_N = sin((N + 0.5) * t) ./ (0.5 * t);
D_N(t == 0) = (N + 0.5) / 0.5;figure;
plot(t, D_N);
title("D_N(t) N = " + N);x1 = cos(t);
x2 = (abs(t) < pi/2);y1 = conv(x1, D_N, 'same') * (t(2) - t(1)) / ( 2 * pi);y2 = conv(x2, D_N, 'same') * (t(2) - t(1)) / ( 2 * pi);figure;
subplot(2, 1, 1);
plot(t, x1, 'b');
hold on;
plot(t, y1, 'r');subplot(2, 1, 2);
plot(t, x2, 'b');
hold on;
plot(t, y2, 'r');

D_N(t)  N = 50
连续信号和不连续信号
可以发现,信号在连续点受旁瓣影响小,在不连续点受旁瓣影响大。
随着 N N N 变大,只是让旁瓣向着 t = t 0 t = t_{0} t=t0 压缩。对于不连续点 t 0 t_{0} t0 处,也就是随着 N N N 变大,不连续点受旁瓣影响导致的振荡会向着 t = t 0 t = t_{0} t=t0 压缩。
从能量的角度来说,当不连续点附近的振荡被压缩时,由于能量守恒,不连续点处的过冲会增加。只不过由于狄利克雷核随 N N N 增大到一定程度后,旁瓣在纵轴变化的程度不大,故过冲在 N N N 增大到一定程度后变化幅度也很小。
吉伯斯效应是一个典型的受狄利克雷核影响的现象,狄利克雷核还有很多有趣的性质等待人们挖掘。

六、总结

x ( t ) x(t) x(t) 的傅里叶级数的展开式可以看作 x ( t ) x(t) x(t) 与狄利克雷核做周期卷积的结果。我们探索狄利克雷核的各种性质(比如其类似狄拉克函数 δ ( t ) \delta(t) δ(t) 的性质 ),从而探索傅里叶级数的各种性质。 狄利克雷核在周期积分为定值,且在 t = 0 t = 0 t=0 处的趋近值随 N N N 变大而变大。不同的 N N N 值让狄利克雷核的主瓣和旁瓣不同程度地影响着傅里叶级数。

参考资料

[1] Oppenheim, Willsky, Nawab. Signals & Systems [M]. 2nd Edition. UK London: Prentice-Hall International (UK) Limited.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/355105.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vuejs3+elementPlus后台管理系统,左侧菜单栏制作,跳转、默认激活菜单

默认激活菜单,效果&#xff1a; 默认激活菜单&#xff0c;效果1&#xff1a; 默认激活菜单&#xff0c;效果2&#xff1a; 跳转链接效果&#xff1a; 制作&#xff1a; <script setup> import {useUserStore} from "/stores/userStore.js"; import {ref} fr…

实验2:RIPv2的配置

由于RIPv1是有类别的路由协议,路由更新不携带子网信息,不支持不连续子网、VLSM、手工汇总和验证等&#xff0c;本书重点讨论RIPv2。 1、实验目的 通过本实验可以掌握&#xff1a; RIPv1和 RIPv2的区别。在路由器上启动RIPv2路由进程。激活参与RIPv2路由协议的接口。auto-sum…

Mybatis Plus 详解 IService、BaseMapper、自动填充、分页查询功能

结构直接看目录 前言 MyBatis-Plus 是一个 MyBatis 的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。 愿景 我们的愿景是成为 MyBatis 最好的搭档&#xff0c;就像 魂斗罗 中的 1P、2P&#xff0c;基友搭配&#xff0c;效…

租房项目之并发缺失数据问题

前奏&#xff1a;本项目是一个基于django的租房信息获取项目。本次博客牵扯到两个版本&#xff0c;集中式分布以及分布式部署&#xff08;两个版本的ui不同&#xff0c;集中式用的是老版ui&#xff0c;分布式使用的是新版ui&#xff09;&#xff1b; 项目链接&#xff1a;http…

审稿人:拜托,请把模型时间序列去趋势!!

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 时间序列分析是数据科学中一个重要的领域。通过对时间序列数据的分析&#xff0c;我们可以从数据中发现规律、预测未来趋势以及做出决策…

全网最全postman接口测试教程和项目实战~从入门到精通

Postman实现接口测试内容大纲一览&#xff1a; 一、什么是接口&#xff1f;为什么需要接口&#xff1f; 接口指的是实体或者软件提供给外界的一种服务。 因为接口能使我们的实体或者软件的内部数据能够被外部进行修改。从而使得内部和外部实现数据交互。所以需要接口。 比如&…

php配合fiddler批量下载淘宝天猫商品数据分享

有个做电商的朋友问我&#xff0c;每次上款&#xff0c;需要手动去某宝去搬运商品图片视频&#xff0c;问我能不能帮忙写个脚本&#xff0c;朋友开口了&#xff0c;那就尝试一下 首先打开某宝&#xff0c;访问一款商品&#xff0c;找出他的数据来源 通过观察我们发现主图数据来…

下载elasticsearch-7.10.2教程

1、ES官网下载地址 Elasticsearch&#xff1a;官方分布式搜索和分析引擎 | Elastic 2、点击下载Elasticsearch 3、点击 View past releases&#xff0c;查看过去的版本 4、选择版本 Elasticsearch 7.10.2&#xff0c;点击 Download&#xff0c;进入下载详情 5、点击 LINUX X8…

23种设计模式之桥接模式

桥接模式 1、定义 桥接模式&#xff1a;将抽象部分与它的实现部分解耦&#xff0c;使得两者都能独立变化 2、桥接模式结构 Abstraction&#xff08;抽象类&#xff09;&#xff1a;它是用于定义抽象类的&#xff0c;通常是抽象类而不是接口&#xff0c;其中定义了一个Imple…

信息学奥赛初赛天天练-30CSP-J2022完善程序-结构体构造函数初始化、auto关键字、连通块、洪水填充算法实战

PDF文档公众号回复关键字:20240620 2022 CSP-J 阅读程序2 完善程序 (单选题 &#xff0c;每小题3分&#xff0c;共30分) 2 (洪水填充) 现有用字符标记像素颜色的8 * 8图像。颜色填充操作描述如下&#xff1a;给定起始像素的位置和待填充的颜色&#xff0c;将起始像素和所有可…

【数学建模】——【新手小白到国奖选手】——【学习路线】

专栏&#xff1a;数学建模学习笔记 目录 ​编辑 第一阶段&#xff1a;基础知识和工具 1.Python基础 1.学习内容 1.基本语法 2.函数和模块 3.面向对象编程 4.文件操作 2.推荐资源 书籍&#xff1a; 在线课程&#xff1a; 在线教程&#xff1a; 2.数学基础 1.学习内…

Day01 数据结构概述

目录 一、数据结构概述 1、基本概念 2、数据结构 3、逻辑关系&#xff08;线性结构&非线性结构&#xff09; 4、物理结构&#xff08;存储结构&#xff09; 5、算法 6、算法特征 二、时空复杂度 1、时间复杂度 2、空间复杂度 3、结构类型 一、数据结构概述 1、…

计算机网络:网络层 - 虚拟专用网 VPN 网络地址转换 NAT

计算机网络&#xff1a;网络层 - 虚拟专用网 VPN & 网络地址转换 NAT 专用地址与全球地址虚拟专用网 VPN隧道技术 网络地址转换 NAT网络地址与端口号转换 NAPT 专用地址与全球地址 考虑到 IP 地址的紧缺&#xff0c;以及某些主机只需要和本机构内部的其他主机进行通信&…

flutter开发实战-创建一个微光加载效果

flutter开发实战-创建一个微光加载效果 当加载数据的时候&#xff0c;loading是必不可少的。从用户体验&#xff08;UX&#xff09;的角度来看&#xff0c;最重要的是向用户展示加载正在进行。向用户传达数据正在加载的一种流行方法是在与正在加载的内容类型近似的形状上显示带…

算法:分治(归并)题目练习

目录 题目一&#xff1a;排序数组 题目二&#xff1a;数组中的逆序对 题目三&#xff1a;计算右侧小于当前元素的个数 题目四&#xff1a;翻转对 题目一&#xff1a;排序数组 给你一个整数数组 nums&#xff0c;请你将该数组升序排列。 示例 1&#xff1a; 输入&#xf…

python 逻辑控制语句、循环语句

文章目录 一、逻辑控制语句&#xff08;if、elif、else&#xff09;1.1 单个条件的逻辑判断语句1.2 多个条件的逻辑判断语句 二、循环语句2.1 while 循环2.2 for 循环2.2.1 循环使用 else 语句 一、逻辑控制语句&#xff08;if、elif、else&#xff09; Python 条件语句是通过一…

el-date-picker 有效时间精确到时分秒 且给有效时间添加标记

el-date-picker实现有效日期做标记且时分秒限制选择范围 代码如下&#xff1a; // html部分 <el-date-pickerv-model"dateTime"type"datetime":picker-options"pickerOptions" > </el-date-picker>// js部分 /*** 回放有效日期开始时…

24年计算机等级考试22个常见问题解答❗

24年9月计算机等级考试即将开始&#xff0c;整理了报名中容易遇到的22个问题&#xff0c;大家对照入座&#xff0c;避免遇到了不知道怎么办&#xff1f; 1、报名条件 2、报名入口 3、考生报名之后后悔了&#xff0c;不想考了&#xff0c;能否退费&#xff1f; 4、最多能够报多少…

Git进阶使用(图文详解)

文章目录 Git概述Git基础指令Git进阶使用一、Git分支1.主干分支2.其他分支2.1创建分支2.2查看分支1. 查看本地分支2. 查看远程分支3. 查看本地和远程分支4. 显示分支的详细信息5. 查看已合并和未合并的分支 2.3切换分支1. 切换到已有的本地分支2. 创建并切换到新分支3. 切换到远…

2-11 基于matlab的BP-Adaboost的强分类器分类预测

基于matlab的BP-Adaboost的强分类器分类预测&#xff0c;Adaboost是一种迭代分类算法&#xff0c;其在同一训练集采用不同方法训练不同分类器&#xff08;弱分类器&#xff09;&#xff0c;并根据弱分类器的误差分配不同权重&#xff0c;然后将这些弱分类器组合成一个更强的最终…