人工智能--搭建人工神经网络

2a20c54b85e042bfa2440367ae4807e9.gif

欢迎来到 Papicatch的博客

文章目录

🍉引言

🍉神经元与感知器

🍈神经元(Neuron) 

🍈感知器

🍉损失函数与梯度下降算法

🍈损失函数

🍈梯度下降算法

🍉多层感知器与神经网络

🍈多层感知器(MLP)

🍈激活函数

🍈反向传播算法

🍉实例

🍈手工搭建神经网络

🍉总结


2a20c54b85e042bfa2440367ae4807e9.gif

🍉引言

      人工神经网络(Artificial Neural Networks, ANN)是一种受生物神经系统启发的计算模型,能够学习和执行复杂的非线性映射任务。本文将深入探讨神经元、感知器、损失函数、梯度下降算法、多层感知器(MLP)、激活函数、反向传播算法,并通过实例展示如何手工搭建一个神经网络。

🍉神经元与感知器

🍈神经元(Neuron) 

神经元是神经网络的基本单元,模仿生物神经元的结构和功能。它接收来自其他神经元或外部输入的信号,通过加权求和和激活函数转换后输出结果。

一个简单的神经元模型如下:

其中,𝑥𝑖xi​ 是输入信号,𝑤𝑖wi​ 是对应的权重,𝑏b 是偏置项,𝜎σ 是激活函数,如 sigmoid、ReLU 等。

🍈感知器

感知器模型结构:

🍈感知器实现and函数

逻辑运算and的真值表

x1

x2

y(and运行结果)
0(假)0(假)0(假)
0(假)1(真)0(假)
1(真)0(假)0(假)
1(真)1(真)1(真)

🍈代码实现

# 定义AND运算的函数
def AND(a, b):return a & b# 真值表的输入组合
inputs = [(0, 0),(0, 1),(1, 0),(1, 1)
]# 打印真值表
print("A | B | A AND B")
print("---|---|-------")
for a, b in inputs:result = AND(a, b)print(f" {a} | {b} |   {result}")

    感知器(Perceptron)是最简单的神经网络形式,包含一个单层神经元,直接将输入映射到输出,通常用于二分类问题。

🍉损失函数与梯度下降算法

🍈损失函数

        损失函数(Loss Function)衡量神经网络预测值与实际标签之间的差异。

常见的损失函数包括:

  • 均方误差(Mean Squared Error, MSE):适用于回归问题。
  • 交叉熵损失函数(Cross-Entropy Loss):适用于分类问题。

🍈梯度下降算法

        梯度下降算法通过最小化损失函数来优化神经网络的参数。核心思想是沿着损失函数梯度的反方向更新权重和偏置,从而逐步改进模型的预测能力。

具体步骤如下:

  • 计算损失函数的梯度:使用反向传播算法计算每个参数对损失函数的影响。
  • 更新权重和偏置:通过学习率(learning rate)控制更新步长,减小损失函数值。

🍉多层感知器与神经网络

        异或(XOR)问题是经典的逻辑运算问题,感知器不能拟合出一条直线将结果分开。要将二者分开,必须采用封闭式的曲线才行。多层感知器可以实现。

异或(XOR)真值表

A𝐵B𝐴 XOR 𝐵A XOR B
000
011
101
110
import numpy as np
import matplotlib.pyplot as plt# 定义激活函数(sigmoid)及其导数
def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return x * (1 - x)# 输入数据和目标输出
inputs = np.array([[0, 0],[0, 1],[1, 0],[1, 1]])expected_output = np.array([[0],[1],[1],[0]])# 初始化参数
input_layer_neurons = inputs.shape[1]
hidden_layer_neurons = 2
output_neurons = 1# 初始化权重和偏置
hidden_weights = np.random.uniform(size=(input_layer_neurons, hidden_layer_neurons))
hidden_bias = np.random.uniform(size=(1, hidden_layer_neurons))
output_weights = np.random.uniform(size=(hidden_layer_neurons, output_neurons))
output_bias = np.random.uniform(size=(1, output_neurons))# 设置学习率和迭代次数
learning_rate = 0.1
epochs = 10000
error_history = []# 训练神经网络
for epoch in range(epochs):# 前向传播hidden_layer_activation = np.dot(inputs, hidden_weights)hidden_layer_activation += hidden_biashidden_layer_output = sigmoid(hidden_layer_activation)output_layer_activation = np.dot(hidden_layer_output, output_weights)output_layer_activation += output_biaspredicted_output = sigmoid(output_layer_activation)# 计算误差error = expected_output - predicted_outputerror_history.append(np.mean(np.abs(error)))d_predicted_output = error * sigmoid_derivative(predicted_output)# 反向传播error_hidden_layer = d_predicted_output.dot(output_weights.T)d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_output)# 更新权重和偏置output_weights += hidden_layer_output.T.dot(d_predicted_output) * learning_rateoutput_bias += np.sum(d_predicted_output, axis=0, keepdims=True) * learning_ratehidden_weights += inputs.T.dot(d_hidden_layer) * learning_ratehidden_bias += np.sum(d_hidden_layer, axis=0, keepdims=True) * learning_rate# 打印结果
print("Final hidden weights: ", hidden_weights)
print("Final hidden bias: ", hidden_bias)
print("Final output weights: ", output_weights)
print("Final output bias: ", output_bias)
print("Predicted output: ", predicted_output)# 绘制误差下降图
plt.plot(error_history)
plt.title('Error History')
plt.xlabel('Epoch')
plt.ylabel('Error')
plt.show()# 绘制神经网络预测结果图
def plot_decision_boundary(X, y, model, title):x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),np.arange(y_min, y_max, 0.1))Z = model(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, alpha=0.8)plt.scatter(X[:, 0], X[:, 1], c=y.flatten(), s=40, edgecolor='k')plt.title(title)plt.show()# 定义预测函数
def predict(X):hidden_layer_activation = np.dot(X, hidden_weights) + hidden_biashidden_layer_output = sigmoid(hidden_layer_activation)output_layer_activation = np.dot(hidden_layer_output, output_weights) + output_biaspredicted_output = sigmoid(output_layer_activation)return np.round(predicted_output)# 绘制决策边界
plot_decision_boundary(inputs, expected_output, predict, 'XOR Decision Boundary')

🍈多层感知器(MLP)

        多层感知器(MLP)是一种前向结构的神经网络,由多个全连接隐藏层和至少一个输出层组成。

每个神经元在每层中执行以下步骤:

  • 线性变换:计算加权输入的和。
  • 非线性变换(激活函数):通过激活函数如 sigmoid、ReLU 将结果映射到非线性空间。

🍈激活函数

        激活函数是神经网络中每个神经元的非线性映射函数,常见的有:

Sigmoid 函数:将输入值压缩到0到1之间。

ReLU 函数:对于正数输入,返回输入值本身;对于负数输入,返回0。

🍈反向传播算法

        反向传播算法是训练神经网络的核心技术,通过链式法则计算损失函数相对于每个参数的梯度,并将梯度传播回网络以更新权重和偏置。

🍉实例

三层神经网络结构

🍈手工搭建神经网络

        以下是一个简单的 Python 示例代码,演示如何手工实现一个包含单隐藏层的多层感知器,并训练它解决 XOR 问题。

import numpy as npclass NeuralNetwork:def __init__(self, input_size, hidden_size, output_size):self.weights1 = np.random.randn(input_size, hidden_size)self.bias1 = np.zeros((1, hidden_size))self.weights2 = np.random.randn(hidden_size, output_size)self.bias2 = np.zeros((1, output_size))def sigmoid(self, x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(self, x):return x * (1 - x)def forward_pass(self, X):self.hidden_layer_input = np.dot(X, self.weights1) + self.bias1self.hidden_layer_output = self.sigmoid(self.hidden_layer_input)self.output_layer_input = np.dot(self.hidden_layer_output, self.weights2) + self.bias2self.output = self.sigmoid(self.output_layer_input)return self.outputdef backward_pass(self, X, y, output):self.output_error = y - outputself.output_delta = self.output_error * self.sigmoid_derivative(output)self.hidden_layer_error = np.dot(self.output_delta, self.weights2.T)self.hidden_layer_delta = self.hidden_layer_error * self.sigmoid_derivative(self.hidden_layer_output)self.weights2 += np.dot(self.hidden_layer_output.T, self.output_delta)self.bias2 += np.sum(self.output_delta, axis=0, keepdims=True)self.weights1 += np.dot(X.T, self.hidden_layer_delta)self.bias1 += np.sum(self.hidden_layer_delta, axis=0, keepdims=True)def train(self, X, y, epochs):for epoch in range(epochs):output = self.forward_pass(X)self.backward_pass(X, y, output)if epoch % 1000 == 0:print(f'Epoch {epoch}, Loss: {np.mean(np.square(y - output))}')if __name__ == "__main__":input_size = 2hidden_size = 3output_size = 1nn = NeuralNetwork(input_size, hidden_size, output_size)X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])y = np.array([[0], [1], [1], [0]])nn.train(X, y, epochs=10000)print('Final predictions:')print(nn.forward_pass(X))

🍉总结

        本文详细讲解了人工神经网络的核心组成部分和关键技术。从神经元、感知器到多层感知器的演进,再到损失函数、梯度下降算法和反向传播算法的实际应用,读者可以全面理解神经网络的工作原理及其在实际问题中的应用。通过手工搭建神经网络的示例,读者不仅能够加深对神经网络内部运作的理解,还能够通过修改和扩展代码来探索更复杂的神经网络结构和任务。神经网络作为深度学习的基础,对于理解和实践现代机器学习技术具有重要意义。

希望能给大家提供一些帮助!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/355971.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何解决跨境传输常见的安全及效率问题?

在当今全球化的商业版图中,企业为了拓展国际市场和增强竞争力,跨境传输数据已成为一项不可或缺的业务活动。合格的数据跨境传输方案,应考虑以下要素: 法律合规性:确保方案符合所有相关国家的数据保护法律和国际法规&am…

ffmpeg音视频开发从入门到精通——ffmpeg下载编译与安装

音视频领域学习ffmpeg的重要性 音视频领域中ffmpeg的广泛应用,包括直播、短视频、网络视频、实时互动和视频监控等领域。掌握FM和音视频技术可以获得更好的薪酬。 学习建议音视频学习建议与实战应用 音视频处理机制的学习,需要勤加练习,带…

永磁同步电机驱动死区补偿

1 死区效应及补偿 1. 1 死区效应 在本文的电机控制嵌入式系统中,逆变器为三 相电压型桥式逆变电路,如图 1 所示。 在理想状态 下,上桥臂和下桥臂的控制信号满足互补通断原则, 即上桥臂开通时,下桥臂关断,反之亦然。 而在实际 应用中,开关管的通断需要一定的开通时…

使用GPT/文心实现诗词作画

在教育领域中,古诗词一直是培养学生文化素养和审美能力的重要载体。选择合适的古诗词进行学习和欣赏,不仅能够增强他们的语言表达能力,还能促进他们对中国传统文化的理解和热爱。本文将结合AI技术,将古诗词转换为图画。 1、选择适…

板凳--------第60章 SOCKET:服务器设计

60.1 迭代型和并发型服务器 1016 1.迭代型: 服务器每次只处理一个客户端,只有当完全处理完一个客户端的请求后才会去处理下一个客户端。只适用于快速处理客户端请求的场景,因为每个客户端都必须等待,直到前面所有的客户端都处理完…

mongosh常用命令详解及如何开启MongoDB身份验证

目录 Mongosh常用命令介绍 连接到MongoDB实例 基本命令 查看当前数据库 切换数据库 查看所有数据库 查看当前数据库中的集合 CRUD操作 插入文档 查询文档 更新文档 删除文档 替换文档 索引操作 创建索引 查看索引 删除索引 聚合操作 数据库管理 创建用户 …

安卓Context上下文

目录 前言一、Context简介二、Application Context2.1 Application Context的创建过程2.2 Application Context的获取过程 三、Activity的Context创建过程四、Service的Context创建过程 前言 Context也就是上下文对象,是Android较为常用的类,但是对于Co…

网络虚拟化考题

vrrp讲过吗??? d 每一层都是什么设备啊 abcd 为啥流量不可控不可视 c是啥意思 讲过吗 abc aNET网络虚拟化是啥啊 为啥?? 啥是CDN?????

奔驰EQS SUV升级原厂主动式氛围灯效果展示

以下是一篇关于奔驰 EQs 升级原厂主动氛围灯案例的宣传文案: 在汽车科技不断演进的今天,我们自豪地为您呈现奔驰 EQs 升级原厂主动氛围灯的精彩案例。 奔驰 EQs,作为豪华电动汽车的典范,其卓越品质与高端性能有目共睹。而此次升…

充电学习—6、电量计FuelGauge

电量计功能: 检测电池 计量电量 电量计首要工作: 计算电池的剩余容量、充满时容量、电量百分比 电量百分比 剩余容量 / 充满时容量 * 100% SOC RM / FCC * 100% 典型的一个电池包框架: 包含电芯、电量计IC、保护IC、充放电MOSFET、保险丝…

TrueNAS系统在ARM平台上的移植

随着家庭及中小型企业对存储和共享需求的日益增长,高效、可靠的文件存储系统成为支撑各类应用的关键。 在众多存储系统中,TrueNAS以其卓越的数据完整性与可靠性、简洁高效的应用程序部署和管理、灵活的虚拟化应用添加能力,以及出色的可用性&a…

【SpringBoot】SpringBoot:打造现代化微服务架构

文章目录 引言微服务架构概述什么是微服务架构微服务的优势 使用SpringBoot构建微服务创建SpringBoot微服务项目示例:创建订单服务 配置数据库创建实体类和Repository创建服务层和控制器 微服务间通信使用RestTemplate进行同步通信示例:调用用户服务 使用…

【面试题】风险评估和应急响应的工作流程

风险评估和应急响应是网络安全管理中两个重要的环节。下面分别介绍它们的工作流程: 一、风险评估工作流程: 1.确定评估范围:明确需要评估的信息系统或资产的范围。 2.资产识别:识别并列出所有需要评估的资产,包括硬件…

约束求解器方案设计

1.约束求解介绍 给定一个几何对象(点、直线段、圆、圆弧、平面等)的集合G和一个关于集合G中几何对象之间约束(点的位置、直线段的长度、圆弧对应的圆心角角度、垂直、相切等) 的集合C,则在二元组(G,C)中根…

鸿蒙开发网络管理:【@ohos.request (上传下载)】

上传下载 说明: 本模块首批接口从API version 6开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import request from ohos.request;限制与约束 默认支持https,如果要支持http,需要在config.json里…

如何利用AI简历工具为实习简历加分?

时间匆匆,我们又迎来了毕业季。大学生活丰富多彩,学业同样重要。毕业答辩对于每位大学生来说都是一道重要的门槛。回想起那些为了答辩准备而熬夜、焦虑的日子,那份努力至今难忘。 虽然答辩的准备工作可能相当繁琐,但幸运的是&…

cd 命令特殊路径符 mkdir命令

cd 特殊路径符 cd . 表示当前目录,比如 cd ./Desktop表示切换到当前目录下的Desktop目录内,和 cd Desktop效果一致。cd … 表示上一级目录,比如 cd … 即可切换到上一级目录,cd…/…切换到上二级目录。cd ~ 表示 HOME 目录&#…

隐藏element的DateTimePicker组件自带的清空按钮

管理台页面使用到el-date-picker,type datetimerange 但是组件自带了清空按钮,实际上这个控件业务上代表开始时间和结束时间是一个必填选项,所有想要把清空按钮隐藏掉。 查看了文档https://element.eleme.io/#/zh-CN/component/datetime-p…

[240621] Anthropic 发布了 Claude 3.5 Sonnet AI 助手 | Socket.IO 拒绝服务漏洞

目录 Anthropic 发布 Claude 3.5 Sonnet AI 助手Scoket.IO 拒绝服务漏洞(CVE-2024-38355) Anthropic 发布 Claude 3.5 Sonnet AI 助手 Claude 3.5 Sonnet: 更智能、更快速、更安全的 AI 助手 一、 引言 Anthropic 发布了 Claude 3.5 Sonnet&#xff0…

MySQL数据库初体验+数据库管理(其一)

【1】 操作系统介绍: Linux操作系统有 RedHat CentOS Debian Ubuntu OpenSUSE 信创标准 国产系统 : 华为(欧拉) 阿里(龙蜥) 腾讯 (tencentOS) 麒麟&#xf…