数据结构【二叉树】

前言

我们在前面学习了使用数组来实现二叉树,但是数组实现二叉树仅适用于完全二叉树(非完全二叉树会有空间浪费),所以我们本章讲解的是链式二叉树,但由于学习二叉树的操作需要有一颗树,才能学习相关的基本操作,由于这只是开头,为了降低学习的成本,所以我们手动的来创建一颗普通的二叉树,等到本文的后面,再讲解真正的创建

二叉树的基本结构
typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType _data;struct BinaryTreeNode* _left;struct BinaryTreeNode* _right;
}BTNode;创建新结点
BTNode*BuyNode(BTDataType x)
{BTNode* Node = (BTNode*)malloc(sizeof(BTNode));if (Node == NULL){perror("malloc fail:");exit(1);}Node->_data = x;Node->_left = Node->_right = NULL;
}创造树
BTNode* CreateBinaryTree()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);BTNode* node7 = BuyNode(7);BTNode* node8 = BuyNode(8);node1->_left = node2;node2->_left = node3;node3->_right = node4;node1->_right = node5;node5->_right = node6;node6->_left = node7;node6->_right = node8;return node1;
}int main()
{BTNode* root = CreateBinaryTree();return 0;
}

最后效果如图
在这里插入图片描述

在完成二叉树的基本操作之前,我们先在这里简单的回顾一下二叉树的基本概念。
二叉树只有两个状态

  1. 空树
  2. 非空:由根结点,根节点的左子树,根结点的右子树组成在这里插入图片描述

从图中可以看出,二叉树定义是递归形式的(根结点的左孩子也能看作根,其左右孩子以及对于的联系也能看成左右子树,根的右孩子同理),所以我们下面的操作都是通过递归来实现。

以下所有的操作都会使用上面手搓的树

二叉树的遍历

所谓前中后序的遍历就是根结点的先后访问顺序,所以前中后序遍历也叫前根、中根、后根遍历。

  1. 前序(前根)的访问顺序:根、左子树、右子树
  2. 中序(中根)的访问顺序:左子树、根、右子树
  3. 后序(后根)的访问顺序:左子树、右子树、根

这里先将遍历的原因是后续的操作,都会用到遍历的思路。
要被遍历的树

前序遍历

一般说这个树的前序遍历是[1, 2, 3, 4, 5, 6, 7, 8]
但这不是最详细的表达,最详细的表达是[1, 2, 3, NULL, 4, NULL, NULL, NULL, 5, NULL, 6, 7, NULL, NULL, 8, NULL, NULL]

3 后面的NULL其实是 3 的左孩子,4 后面俩个NULL代表的是 4 的左孩子和右孩子,而 5 前面的NULL代表的是 2 的右孩子,5 后面的NULL代表 5 的左孩子,7 和 8 后面的NULL都是代表他们的左右孩子。

中序

一般说这个树的中序遍历是[3, 4, 2, 1, 5, 7, 6, 8 ];
实际则是[N, 3, N, 4, N, 2, N, 1, N, 5, N, 7, N, 6, N, 8, N](N代替NULL)
由于是先访问左子树,所以第一个真正被遍历的一定是NULL

3 前面的N就是 3 的左孩子,4 前后的 N则代表的是 4 的左右孩子,2 后面的N代表的是 2 的右孩子;5 前面的N代表 5 的左孩子,7 和 8 前后的N都代表他们的左右孩子。

后序

一般:[4, 3, 2, 7, 8, 6, 5, 1]
实际则是[N, N, N, 4, 3, N, 2, N, N, N, 7, N, N, 8, 6, 5, 1](N代替NULL)

第一个N是 3 的左孩子,第二第三个N是 4 的左右孩子,3 后面的N是 2 的右孩子;而 2 后面的第一个N是 5 的左孩子,7 和 8 的前俩个N都是代表他们的左右孩子

注意:无论是哪种遍历,孩子之间的顺序一定是先左孩子,再是右孩子。

层序遍历

就是我们正常的思维,一层一层、从左到右的依次遍历,这种遍历方式叫广度优先遍历(BFS),而前三种遍历方式叫深度优先遍历(DFS)。

层序遍历需要依靠队列来实现。

代码实现

前中后序的遍历的大体相同,只是打印的位置不同

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}前序时printf的位置在前面printf("%d ", root->_data);BinaryTreePrevOrder(root->_left);中序时printf的位置在中间printf("%d ", root->_data);BinaryTreePrevOrder(root->_right);后续时printf的位置在末尾printf("%d ", root->_data)}

用图像讲解递归过程

在这里插入图片描述

右子树的递归过程大体相同,注意实际情况并不会开那么多的空间,而是当你使用完返回再使用的时候,是将原来的空间给重新利用了。

层序遍历的实现

在完成层序遍历之前,我们需要有队列这个数据结构(我们可以直接将以前的代码拿过来:具体代码在数据结构【队列】)

具体思路是,先创建一个队列,将二叉树的根结点存放到队列里,每遍历一个结点就删掉这个在队列里的结点,删掉的同时,将该结点的左右孩子存放到队列内部这样依次往复。

这里的类型是结点的类型,并且存放的是指针,所以要带个*typedef struct BinaryTreeNode* QUEUEDATA;typedef struct QNode
{QUEUEDATA _val;struct QNode* _next;
}QNode;typedef struct Queue
{QNode* phead;QNode* ptail;int size;
}Queue;

层序遍历代码

// 层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{Queue* q = (Queue*)malloc(sizeof(Queue));QueueInit(q);//先把root入到队列QueuePush(q, root);//当队列尾空时,就代表以及打印完了while (!QueueEmpty(q)){//取队头数据BTNode*tmp = QueueFirst(q);//然后删除数据,我只是操作队列内部,并没有动原来的二叉树QueuePop(q);//当为空时不加数据,这就能应对根结点是空时的情况,就不需要在外面再做一次判断if (tmp == NULL){printf("N ");}//非空,将左右孩子添加到队列else{printf("%d ", tmp->_data);QueuePush(q,tmp->_left);QueuePush(q,tmp->_right);}}
}

二叉树的计算

本文计算关于树的计算有四个

  1. 计算树结点的个数
  2. 计算树的叶子结点个数
  3. 计算第k层的节点个数
  4. 计算树的高度

计算节点个数

这就很简单了,就是左右子树加自己,但每个孩子又可以分为根,左子树,右子树,当根等于空时返回0就可以了。

// 二叉树节点个数
int BinaryTreeSize(BTNode* root)
{if (root == NULL){return 0;}return BinaryTreeSize(root->_left) + BinaryTreeSize(root->_right) + 1;
}

这里的+1就是加自己,当你来到下面那个return时,就代表该节点并不是空节点。

计算叶子节点个数

简单的回顾一下:叶子节点就是左右孩子都为空的节点。
所以就可以判断当左右孩子都为空时,就返回 1。

// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL){return 0;}if (root->_left == NULL && root->_right == NULL){return 1;}return BinaryTreeLeafSize(root->_left) + BinaryTreeLeafSize(root->_right);
}

计算第k层节点个数

这个也能很好的用递归来解决,第k层是对于根节点来说的,但对于根节点的下一层来说,第k层其实是第k-1层,所以可以一直减下去,直到当k==1时,return 1

// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL){return 0;}if (k == 1){return 1;}return BinaryTreeLevelKSize(root->_left, k - 1) + BinaryTreeLevelKSize(root->_right, k - 1);
}

计算树的高度

那我就比较左子树和右子树的高度,比较出结果后再加自身的高度(比较出的高度+1)
结束递归的条件就是当我的子树为空,返回0。

// 二叉树的高度
int BinaryHeight(BTNode* root)
{if (root == NULL){return 0;}return 	BinaryHight(root->_left) > BinaryHight(root->_right) ? BinaryHight(root->_left) + 1: BinaryHight(root->_right) + 1;
}

这样也可以,但是如果用这个去做利扣的题是无法通过的,并不是因为程序结果错误,而是因为栈溢出。
看看为什么会栈溢出:我要比较出两个子树的长度,就一定会运行
return BinaryHight(root->_left) > BinaryHight(root->_right) ? BinaryHight(root->_left) + 1: BinaryHight(root->_right) + 1; 这有没有发现,我并没有记录比较高的值,我辛辛苦苦递归很多次才得到的左右子树中较高的子树,当我要返回高度的时候,诶?我前面的数是啥?所以我就又要进行 BinaryHight(root->_left) + 1或者BinaryHight(root->_right) + 1,这样我又会进行递归,再递归比较,然后再递归返回值->递归比较这样一直下去,直到最低层(root == NULL)。

所以,我们需要变量来记录两颗子树的高度,这样我们再比较的时候就不会重复递归了。


// 二叉树的高度
int BinaryHeight(BTNode* root)
{if (root == NULL){return 0;}//记录左树的高度int L = BinaryHight(root->_left);//记录右树的高度int R = BinaryHight(root->_right);//比较出较高的,加上自己这一层的高度return (L > R ? L : R) + 1;
}

二叉树的创建和销毁

二叉树的创建(前序)

这题是使用前序来创建二叉树

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi);

'#'号代表空,a是数组,n是长度,pi是下标
先创建父亲节点,然后左子树 -> 创建左子树当中的父亲节点,然后创建左子树 —>直到这时的数据是'#'返回NULL,创建右子树,右子树创建完,函数自然结束,回到上一层让上一层来创建右子树。
当pi等于n的时候,就代表已经遍历完该数组了,这条数组里的数据已经被我创建成一个二叉树了;这时候就返回NULL;这个判断放在函数的开头。

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi)
{
//当下标与长度相等,返回NULLif (*pi == n){return NULL;}if (a[*pi] == '#'){(*pi)++;return NULL;}BTNode* root = (BTNode*)malloc(sizeof(BTNode));//先创建根节点,再创建左子树,再创建右子树root->_data = a[(*pi)++];root->_left = BinaryTreeCreate(a, n, pi);//先创建左子树root->_right = BinaryTreeCreate(a, n, pi);//再创建右子树return root;//返回根节点
}

二叉树的销毁(后序)

这题我们采用后序来删除,是因为后续并不需要记录节点,是从底层一点一点销毁节点,当我左右子树的节点都销毁了(或者都为NULL),才销毁我的根节点。

// 二叉树销毁
void BinaryTreeDestory(BTNode** root)

既然是销毁,那么就会修改原来的值,所以我们就传二叉树根节点的地址。

// 二叉树销毁
void BinaryTreeDestory(BTNode** root)
{if (root == NULL || *root == NULL){return;}BinaryTreeDestory(&(*root)->_left);//先销毁左子树BinaryTreeDestory(&(*root)->_right);//再销毁右子树//当左右节点都被销毁或者都为NULLfree(*root);//最后再销毁根节点
}

结语

到这里二叉树的基本函数就讲完啦。

最后感谢您能阅读完此片文章,如果有任何建议或纠正欢迎在评论区留言,也可以前往我的主页看更多好文哦(点击此处跳转到主页)。
如果您认为这篇文章对您有所收获,点一个小小的赞就是我创作的巨大动力,谢谢!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/356011.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Web APIs】DOM 文档对象模型 ④ ( querySelector 函数 | querySelectorAll 函数 | NodeList 对象 )

文章目录 一、querySelector 函数1、querySelector 函数简介2、完整代码示例 二、querySelectorAll 函数1、querySelectorAll 函数简介2、完整代码示例 三、NodeList 对象1、NodeList 对象简介2、完整代码示例 本博客相关参考文档 : WebAPIs 参考文档 : https://developer.moz…

Java中将文件转换为Base64编码的字节码

在Java中,将文件转换为Base64编码的字节码通常涉及以下步骤: 读取文件内容到字节数组。使用java.util.Base64类对字节数组进行编码。 下面是一个简单的Java示例代码,演示如何实现这个过程: import java.io.File; import java.io…

【HarmonyOS NEXT】鸿蒙 如何在包含web组件的页面 让默认焦点有效

页面包含web组件Button组件等,把页面的默认焦点放到Button组件上,不起效果。 因为web组件默认会在组件加载完成后获取焦点; 可以在web的网页加载完成时onPageEnd回调中,将设置默认获焦的组件通过focusControl.requestFocus方法主…

gitlab升级16.11.3-ee

背景 这是事后一段时间补充记录的博客。 升级目的:修补漏洞CVE-2024-4835 未经认证的威胁攻击者能够利用该漏洞在跨站脚本 (XSS) 攻击中,轻松接管受害者账户。 gitlab版本为14.6.2-ee升级至16.11.3-ee 思路 翻阅文档找升级方法及升级版本路径。使用…

切割游戏介绍

简介 上大学时,在学校实验室里玩过一个貌似使用VC写的小游戏,一个小球在界面上四处游荡,玩家使用鼠标切割背景,将背景切割剩余到一定的百分比后,就胜利了,后边的背景图会全部展示出来。 使用qt的qml技术&a…

Linux_文件IO

目录 一、库函数进行文件操作 1、fopen/fclose 2、fwrite 3、追加方式-“a” 4、fread 5、三个默认文件流 二、系统函数进行文件操作 1、open/close 2、write 3、追加方式-“O_APPEND” 4、read 5、struct file结构体 6、文件描述符 6.1 struct file的引用…

Pyqt QCustomPlot 简介、安装与实用代码示例(一)

目录 简介安装实用代码示例带有填充的简单衰减正弦函数及其红色的指数包络线具有数据点的 sinc 函数、相应的误差条和 2--sigma 置信带几种散点样式的演示展示 QCustomPlot 在设计绘图方面的多功能性 结语 所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转…

数学-奇异值

有点名词党 奇异值的计算通常涉及矩阵的奇异值分解Singular Value Decomposition, SVD。奇异值分解是将一个矩形矩阵 ( A ) 分解为三个矩阵的乘积: [ A U ΣVT] 其中: - ( U ) 是一个 ( m m ) 的正交矩阵,它的列向量是 ( A AT) 的特征向…

课程标准包括哪些内容?

老师们常常会思考:课程标准究竟包含哪些要素?课程标准不仅仅是一系列冷冰冰的条条框框,而是活生生的指导原则,引领教学实践,激发学生的潜能。 课程标准,简而言之,是对学习成果的期望和要求的明确…

Starlink全系卫星详细介绍,波段频谱、激光星间链路技术、数据传输速率等等

Starlink全系卫星详细介绍,波段频谱、激光星间链路技术、数据传输速率等等。 Starlink是SpaceX公司开发的一个低轨道(LEO)卫星网络系统,旨在为全球用户提供高速宽带互联网服务。截至2024年6月,Starlink已经发射并运行…

rknn转换后精度差异很大,失真算子自纠

下面是添加了详细注释的优化代码: import cv2 import numpy as np import onnx import onnxruntime as rt from onnx import helper, shape_inferencedef get_all_node_names(model):"""获取模型中所有节点的名称。参数:model (onnx.ModelProto): O…

wordpress站群搭建3api代码生成和swagger使用

海鸥技术下午茶-wordpress站群搭建3api代码生成和swagger使用 目标:实现api编写和swagger使用 0.本次需要使用到的脚手架命令 生成 http server 代码 goctl api go -api all.api -dir ..生成swagger文档 goctl api plugin -plugin goctl-swagger"swagger -filename st…

【Kafka】Kafka Broker工作流程、节点服役与退役、副本、文件存储、高效读写数据-08

【Kafka】Kafka Broker工作流程、节点服役与退役、副本、文件存储、高效读写数据 1. Kafka Broker 工作流程1.1 Zookeeper 存储的 Kafka 信息1.2 Kafka Broker总体工作流程1.2.1 Controller介绍 1.3 Broker 重要参数 2. 节点服役与退役3. Kafka副本 1. Kafka Broker 工作流程 …

Python 数据可视化 散点图

Python 数据可视化 散点图 import matplotlib.pyplot as plt import numpy as npdef plot_scatter(ref_info_dict, test_info_dict):# 绘制散点图,ref横,test纵plt.figure(figsize(80, 48))n 0# scatter_header_list [peak_insert_size, median_insert…

深入探索C++中的AVL树

引言 在数据结构和算法的世界里,平衡二叉搜索树(Balanced Binary Search Tree, BST)是一种非常重要的数据结构。AVL树(Adelson-Velsky和Landis发明的树)就是平衡二叉搜索树的一种,它通过自平衡来维护其性质…

支付宝推出NFC(近场通信)碰一碰支付功能

近日,支付宝推出NFC(近场通信)碰一碰支付功能,支持iPhone、安卓手机。NFC支付早已不是新事物,从二维码支付重回NFC支付,支付宝能撬动市场吗? 根据网友反馈,目前支付宝正在上海静安大…

node版本过高出现ERR_OSSL_EVP_UNSUPPORTED错误

错误原因: 新版本的nodejs使用的openssl和旧版本不同,导致出错 解决方法: 1.将node版本重新换回16.x 2 windows 下 在package.json文件下添加set NODE_OPTIONS--openssl-legacy-provider && "scripts": {"dev"…

车辆轨迹预测系列 (二):常见数据集介绍

车辆轨迹预测系列 (二):常见数据集介绍 文章目录 车辆轨迹预测系列 (二):常见数据集介绍1、NuScenes (2020):1、下载2、说明 2、Waymo Open Dataset (2020):1、介绍2、概述3、下载4、教程5、参考 3、Lyft Level 5 (2020)&#xff…

如何把期末成绩发给家长?

期末的脚步越来越近,又到了头疼成绩怎么群发给家长的时候了,别担心,期末成绩群发秘籍来帮忙,让我们一起完成这项任务! 1. 邮件VS短信 首先得选个合适的沟通方式。邮件正式,适合详细说明;短信快…

数据仓库的实际应用示例-广告投放平台为例

数据仓库的数据分层通常包括以下几层: ODS层:存放原始数据,如日志数据和结构化数据。DWD层:进行数据清洗、脱敏、维度退化和格式转换。DWS层:用于宽表聚合值和主题加工。ADS层:面向业务定制的应用数据层。…