SCI一区级 | Matlab实现BO-Transformer-LSTM多变量时间序列预测

SCI一区级 | Matlab实现BO-Transformer-LSTM多变量时间序列预测

目录

    • SCI一区级 | Matlab实现BO-Transformer-LSTM多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.【SCI一区级】Matlab实现BO-Transformer-LSTM多变量时间序列预测,贝叶斯优化Transformer结合LSTM长短期记忆神经网络多变量时间序列预测,BO-Transformer-LSTM/Bayes-Transformer-LSTM(程序可以作为SCI一区级论文代码支撑,目前尚未发表);

2.贝叶斯优化参数为:学习率,LSTM隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复Matlab实现Transformer-Adaboost多变量时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
result = xlsread('data.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数
or_dim = size(result, 2);      % 原始特征+输出数目
kim =  2;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end%%  创建待优化函数
ObjFcn = @BOFunction;%%  贝叶斯优化参数范围
optimVars = [

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/357697.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式,容错:10台电脑坏了2台

由10台电脑组成的分布式系统,随机、任意坏了2台,剩下的8台电脑仍然储存着全部信息,可以继续服务。这是怎么做到的? 设N台电脑,坏了H台,要保证上述性质,需要有冗余,总的存储量降低为…

【Flink metric】Flink指标系统的系统性知识:以便我们实现特性化数据的指标监控与分析

文章目录 一. Registering metrics:向flink注册新自己的metrics1. 注册metrics2. Metric types:指标类型2.1. Counter2.2. Gauge2.3. Histogram(ing)4. Meter 二. Scope:指标作用域1. User Scope2. System Scope ing3. User Variables 三. Reporter ing四. System m…

华为数通——单臂路由

单臂路由:指在三层设备路由器的一个接口上通过配置子接口(或“逻辑接口”,并不存在真正物理接口)的方式,实现原来相互隔离的不同VLAN(虚拟局域网)之间的互联互通。但是仅仅允许单播通信。 单臂路…

Web3新视野:Lumoz节点的潜力与收益解读

摘要:低估值、高回报、无条件退款80%...... Lumoz正通过其 zkVerifier 节点销售活动,引领一场ZK计算革命。 长期以来,加密市场以其独特的波动性和增长潜力,持续吸引着全球投资者的目光。而历史数据表明,市场往往在一年…

示例:WPF中应用DependencyPropertyDescriptor监视依赖属性值的改变

一、目的:开发过程中,经常碰到使用别人的控件时有些属性改变没有对应的事件抛出,从而无法做处理。比如TextBlock当修改了IsEnabled属性我们可以用IsEnabledChanged事件去做对应的逻辑处理,那么如果有类似Background属性改变我想找…

vscode用vue框架2,续写登陆页面逻辑,以及首页框架的搭建

目录 前言: 一、实现登录页信息验证逻辑 1.实现登录数据双向绑定 2.验证用户输入数据是否和默认数据相同 补充知识1: 知识点补充2: 二、首页和登录页之间的逻辑(1) 1. 修改路由,使得程序被访问先访问首页 知识点补充3&am…

一、系统学习微服务遇到的问题集合

1、启动了nacos服务&#xff0c;没有在注册列表 应该是版本问题 Alibaba-nacos版本 nacos-文档 Spring Cloud Alibaba-中文 Spring-Cloud-Alibaba-英文 Spring-Cloud-Gateway 写的很好的一篇文章 在Spring initial上面配置 start.aliyun.com 重新下载 < 2、 No Feign…

【Java】Java基础语法

一、注释详解 1.1 注释的语法&#xff1a; // 单行注释/*多行注释 *//**文档注释 */ 1.2 注释的特点&#xff1a; 注释不影响程序的执行&#xff0c;在Javac命令进行编译后会将注释去掉 1.3 注释的快捷键 二、字面量详解 2.1 字面量的概念&#xff1a; 计算机是用来处理…

西木科技Westwood-Robotics人型机器人Bruce配置和真机配置

西木科技Westwood-Robotics人型机器人Bruce配置和真机配置 本文内容机器人介绍Bruce机器人Gazebo中仿真代码部署Bruce真机代码部署 本文内容 人形机器人Brcue相关介绍docker中安装Gazebo并使用Bruce机器人控制器更换环境配置 机器人介绍 公司&#xff1a;西木科技Westwood-R…

「动态规划」如何求环绕字符串中唯一的子字符串个数?

467. 环绕字符串中唯一的子字符串https://leetcode.cn/problems/unique-substrings-in-wraparound-string/description/ 定义字符串base为一个"abcdefghijklmnopqrstuvwxyz"无限环绕的字符串&#xff0c;所以base看起来是这样的&#xff1a;"...zabcdefghijklm…

服务器数据恢复—raid5热备盘同步失败导致阵列崩溃如何恢复数据?

服务器存储数据恢复环境&故障&#xff1a; 某品牌DS5300存储&#xff0c;包含一个存储机头和多个磁盘柜&#xff0c;组建了多组RAID5磁盘阵列。 某个磁盘柜中的一组RAID5阵列由15块数据盘和1块热备硬盘组建。该磁盘柜中的某块硬盘离线&#xff0c;热备盘自动替换并开始同步…

Linux 7种 进程间通信方式

传统进程间通信 通过文件实现进程间通信 必须人为保证先后顺序 A--->硬盘---> B&#xff08;B不知道A什么时候把内容传到硬盘中&#xff09; 1.无名管道 2.有名管道 3.信号 IPC进程间通信 4.消息队列 5.共享内存 6.信号灯集 7.socket通信 一、无名管道&a…

【c2】编译预处理,gdb,makefile,文件,多线程,动静态库

文章目录 1.编译预处理&#xff1a;C源程序 - 编译预处理【#开头指令和特殊符号进行处理&#xff0c;删除程序中注释和多余空白行】- 编译2.gdb调试&#xff1a;多进/线程中无法用3.makefile文件&#xff1a;make是一个解释makefile中指令的命令工具4.文件&#xff1a;fprint/f…

Flink Sql Redis Connector

经常做开发的小伙伴肯定知道用flink连接redis的时候比较麻烦&#xff0c;更麻烦的是解析redis数据&#xff0c;如果rdis可以普通数据库那样用flink sql连接并且数据可以像表格那样展示出来就会非常方便。 历时多天&#xff0c;我终于把flink sql redis connector写出来了&…

预备资金有5000-6000买什么电脑比较好?大学生电脑选购指南

小新pro14 2024 处理器&#xff1a;采用了英特尔酷睿Ultra5 125H或Ultra9 185H两种处理器可选&#xff0c;这是英特尔最新的高性能低功耗处理器&#xff0c;具有18个线程&#xff0c;最高可达4.5GHz的加速频率&#xff0c;支持PCIe 4.0接口&#xff0c;内置了强大的ARC核芯显卡…

Pwn刷题记录(不停更新)

1、CTFshow-pwn04&#xff08;基础canary&#xff09; ​ 好久没碰过pwn了&#xff0c;今天临时做一道吧&#xff0c;毕竟刚联合了WSL和VSCode&#xff0c;想着试着做一道题看看&#xff0c;结果随手一点&#xff0c;就是一个很少接触的&#xff0c;拿来刷刷&#xff1a; ​ …

在SQL中使用explode函数展开数组的详细指南

目录 简介示例1&#xff1a;简单数组展开示例2&#xff1a;展开嵌套数组示例3&#xff1a;与其他函数结合使用处理结构体数组示例&#xff1a;展开包含结构体的数组示例2&#xff1a;展开嵌套结构体数组 总结 简介 在处理SQL中的数组数据时&#xff0c;explode函数非常有用。它…

吴恩达机器学习 第二课 week4 决策树

目录 01 学习目标 02 实现工具 03 问题描述 04 构建决策树 05 总结 01 学习目标 &#xff08;1&#xff09;理解“熵”、“交叉熵&#xff08;信息增益&#xff09;”的概念 &#xff08;2&#xff09;掌握决策树的构建步骤与要点 02 实现工具 &#xff08;1&#xff09;…

Web框架简介

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 如果你要从零开始建立了一些网站&#xff0c;可能会注意到你不得不反复解决一些类似的问题。这样做是令人厌烦的&#xff0c;并且违反了良好编程的核…

kotlin集合框架

1、集合框架的接口类型对比 2、不可变和可变List fun main() {// 不可变List - 不能删除或添加元素val intList: List<Int> listOf(1,2,3)intList.forEach{println(it) // 1 2 3}println("")// 可变List - 可以删除或添加元素val mutableList mutableListO…