Langchain实战:构建高效的知识问答系统

引言

知识问答系统(KQA)是自然语言处理领域的核心技术之一,它能够帮助用户从大量数据中快速准确地检索到所需信息。知识问答系统成为了帮助个人和企业快速获取、筛选和处理信息的重要工具。它们在很多领域都发挥着重要作用,例如在线客服、智能助手、数据分析和决策支持等。

Langchain不仅提供了构建基本问答系统的必要模块,还支持更为复杂和高级的问答场景。例如,它可以处理结构化数据和代码,使得我们能够针对数据库或代码库进行问答。这极大地扩展了知识问答系统的应用范围,使其能够适应更多复杂的实际需求。本篇文章将通过一个简单的实战例子,介绍如何使用Langchain构建基本的知识问答系统。

flow.jpeg

实战

下面,我们将通过实战例子手把手介绍如何使用Langchain搭建知识问答系统。

1. 文档加载和预处理

构建知识问答系统的第一步是加载和预处理文档。Langchain提供了WebBaseLoader模块,可以帮助我们轻松加载文档:

from langchain.document_loaders import WebBaseLoader
​
# 加载文档
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
documents = loader.load()

加载文档后,我们需要对文档进行预处理,以便后续处理。RecursiveCharacterTextSplitter模块可以帮助我们将文档切割成小块,便于处理:

from langchain.text_splitter import RecursiveCharacterTextSplitter
​
# 文档切割
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
texts = text_splitter.split_documents(documents)

2. 文本嵌入

文本嵌入是将文本转换为向量的过程,它是自然语言处理的基础。Langchain提供了OpenAIEmbeddings模块,可以帮助我们快速实现文本嵌入:

from langchain.embeddings import OpenAIEmbeddings
​
# 创建嵌入
embeddings = OpenAIEmbeddings()

3. 构建向量存储库

向量存储库是存储文档嵌入的地方。通过Chroma模块,我们可以方便地创建和管理向量存储库:

from langchain.vectorstores import Chroma
​
# 构建向量存储库
docsearch = Chroma.from_documents(texts, embeddings)

4. 构建检索QA链

检索QA链是知识问答系统的核心,它负责处理用户的查询,并从向量存储库中检索相关文档:

from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
​
# 构建检索QA链
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())

5. 查询执行和结果获取

最后,我们可以执行用户的查询,并从系统中获取答案:

# 执行查询
query = "What is Task Decomposition?"
answer = qa.run(query)

总结

通过Langchain库,我们快速搭建出了一个基础的知识问答系统。不仅如此,Langchain还提供了丰富的模块和功能,使得开发者可以根据项目的需求定制问答系统。例如,我们可以使用不同的文档加载器、文本切割器和向量存储库,来适应不同类型和规模的数据。此外,Langchain还支持多种检索和问答模式,如Retrieval-augmented Generation (RAG)模式,使得我们能够构建出更为高级和复杂的知识问答系统。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/358102.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

每日一练:攻防世界:5-1 MulTzor

一、XorTool 基于 XOR(异或)运算实现。它可以帮助您快速地对文本、二进制文件进行加密解密操作。 认识XorTool工具: 让我们先去认识一下工具: xortool.py 是基于 python 的脚本,用于完成一些 xor 分析,…

TCP与UDP_三次握手_四次挥手

TCP vs UDP TCP数据 具体可以通过Cisco Packet Tracer工具查看: UDP数据 三次握手、四次挥手 为什么是3/4次?这牵扯到单工、双工通信的问题 TCP建立连接:表白 TCP释放连接:分手 TCP—建立连接—三次握手 解释: 首先&…

CSS+JS:通过修改filter实现图片颜色随时间渐变

原理&#xff1a;修改filter的hue-rotate属性 效果&#xff1a; 代码: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0&q…

7.系统工具——黑马程序员Java最新AI+若依框架项目

目录 前言一、表单构建任务&#xff1a;设计添加课程表单 二、 代码生成1.任务&#xff1a;将部门表在页面端显示改为树形结构 三、系统接口任务&#xff1a;使用sagger进行接口测试 前言 提示&#xff1a;本篇讲解若依框架 系统工具 一、表单构建 功能&#xff1a;完成前端…

《web程序设计》课程大作业,XX地旅游景点网站【IDEA下JSP(前后端)+MySQL技术】

背景&#xff1a; 《web程序设计》课程大作业要求 一、课程目标&#xff1a;课程教学目的是让学生能够全面了解和掌握目前国内比较流行的交互式网页制作的理论知识与开发技术&#xff0c;能开发制作出有一定实用性的交互式网站&#xff0c;为将来继续学习和就业打下坚实基础。…

Linux系统及常用命令介绍

一.介绍 Linux一套免费使用和自由传播的类Unix操作系统&#xff0c;是一个遵循POSIX的多用户、多任务、支持多线程和多CPU的操作系统。Linux系统的说明可以自行百度&#xff0c;知道这几点即可&#xff1a; 1.Linux中一切都是文件&#xff1b; 2.Linux是一款免费操作系统&…

水滴型粉碎机:饲料加工关键设备

在现代饲料加工行业中&#xff0c;高效、精准的加工设备对于提升饲料品质和产量至关重要。水滴型粉碎机作为一种实用的饲料加工设备&#xff0c;凭借其设计和性能&#xff0c;在饲料加工领域发挥着不可替代的作用。 一、水滴型粉碎机的设计特点 水滴型粉碎机采用了水滴型设计&a…

[图解]企业应用架构模式2024新译本讲解16-行数据入口2

1 00:00:00,750 --> 00:00:02,470 好&#xff0c;我们来看代码 2 00:00:03,430 --> 00:00:06,070 我们一步一步执行 3 00:00:42,500 --> 00:00:45,000 先初始化数据 4 00:00:52,300 --> 00:00:53,650 创建连接 5 00:00:55,900 --> 00:00:56,970 这里面 6 0…

帝国cms批量取消文章审核-把已审核的文章改成未审核的方法

帝国cms很多人采集的时候&#xff0c;把文章弄成了审核过的文章&#xff0c;或者因为其他的原因&#xff0c;文章都是审核通过&#xff0c;为了seo又不能把全部文章放出来&#xff0c;所以需要把文章弄成未审核以下就是解决本问题的办法 首先来修改后台列表文件&#xff0c;自…

【SPSS】基于RFM+Kmeans的电商客户价值聚类分析

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

Node.js 是一个开源的 跨平台的JavaScript运行环境

https://www.npmjs.com/ 中央仓库 Visual Studio Code - Code Editing. Redefined https://openjsf.org/ OpenJS 促进了关键 JavaScript 技术在全球范围内的广泛采用和持续发展。 Apache服务器 Nginx服务器 Tomcat服务器 Node.js服务器 Gunicorn服务器 uW…

【第13章】进阶调试思路:如何安装复杂节点IP-Adapter?(安装/复杂报错/节点详情页/精读)ComfyUI基础入门教程

🎈背景 IP-Adapter这个名字,大家可能听说过,可以让生成的结果从参考图中学习人物、画风的一致性,在目前是比较实用的一个节点,广泛的用于照片绘制、电商作图等方面。 但同时,这个节点也是比较难安装的一个节点。 所以,这节课,我们就通过一个案例,来学习如何在Comf…

RX8025/INS5T8025实时时钟-国产兼容RS4TC8025

该模块是一个符合I2C总线接口的实时时钟&#xff0c;包括一个32.768 kHz的DTCXO。 除了提供日历&#xff08;年、月、日、日、时、分、秒&#xff09;功能和时钟计数器功能外&#xff0c;该模块还提供了大量其他功能&#xff0c;包括报警功能、唤醒定时器功能、时间更新中断功能…

Java | Leetcode Java题解之第188题买卖股票的最佳时机IV

题目&#xff1a; 题解&#xff1a; class Solution {public int maxProfit(int k, int[] prices) {if (prices.length 0) {return 0;}int n prices.length;k Math.min(k, n / 2);int[] buy new int[k 1];int[] sell new int[k 1];buy[0] -prices[0];sell[0] 0;for (…

windows安装docker

【Docker】掌握 Docker魔法&#xff1a;Windows 11 平台上的完美容器部署终极指南_win11安装docker-CSDN博客https://blog.csdn.net/joeyoj/article/details/136427362Windows安装使用Docker&#xff0c;方便你的开发和部署(DockerDesktop篇)_windows docker安装部署-CSDN博客h…

示例:WPF中应用DataGrid读取实体DisplayAttribute特性自动自动生成列名

一、目的&#xff1a;通过重写DataGrid的OnAutoGeneratingColumn方法实现根据定义特性自动生成列头信息功能 二、实现 <DataGrid ItemsSource"{local:GetStudents Count50}"/>实体定义如下 public class Student{[DataGridColumn("*")][Display(Na…

统信UOS1070上配置文件管理器默认属性03

原文链接&#xff1a;统信UOS1070上配置文件管理器默认属性03 Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇关于在统信UOS 1070上配置文件管理器默认属性的第三篇文章——配置工作区、侧边栏及高级设置。通过这些配置&#xff0c;您可以更好地组织和管理文件&…

r2frida:基于Frida的远程进程安全检测和通信工具

关于r2frida r2frida是一款能够将Radare2和Frida的功能合二为一的强大工具&#xff0c;该工具本质上是一个Radare2的自包含插件&#xff0c;可以帮助广大研究人员利用Frida的功能实现对目标进程的远程安全检测和通信管理。 Radare2项目提供了针对逆向工程分析的完整工具链&…

高考十字路口:24年考生如何权衡专业与学校的抉择?

文章目录 每日一句正能量前言专业解析理工科专业商科专业人文社科专业艺术与设计专业个人经验与思考过程结论 名校效应分析名校声誉与品牌效应资源获取学术氛围就业优势个人发展结论 好专业和好学校的权衡个人职业目标行业需求教育质量资源和机会学术氛围就业优势经济和地理位置…

基于YOLOv5的火灾检测系统的设计与实现(PyQT页面+YOLOv5模型+数据集)

基于YOLOv5的火灾检测系统的设计与实现 概述系统架构主要组件代码结构功能描述YOLOv5检测器视频处理器主窗口详细代码说明YOLOv5检测器类视频处理类主窗口类使用说明环境配置运行程序操作步骤检测示例图像检测视频检测实时检测数据集介绍数据集获取数据集规模YOLOv5模型介绍YOL…