针对AIGC检测的鲁棒性测试——常见攻击手段汇总

前言:这篇文章来总结一下针对AIGC检测的常见攻击手段,选取的研究工作均出自近5年AIGC检测相关文章。(论文被拒了需要补实验,先来看看别人怎么做的……)

2019 WIFS Detecting and Simulating Artifacts in GAN Fake Images

We show the robustness of the proposed method with two different post-processing methods: JPEG compression and image resize. For JPEG compression, we randomly select one JPEG quality factor from [100, 90, 70, 50] and apply it to each of the fake image. For image resize, we randomly select one image size from [256, 200, 150, 128].

在这里插入图片描述

2020 CVPR CNN-Generated Images Are Surprisingly Easy to Spot… for Now

To test this, we blurred (simulating re-sampling) and JPEG-compressed the real and fake images following the protocol in [38], and evaluated our ability to detect them (Figure 5).

在这里插入图片描述

2022 ECCV Detecting Generated Images by Real Images

Gaussian blurring (sigma: 0.1–1), JPEG quality factors (70–100), image cropping, and resizing (cropping/scaling factor: 0.25–1)

在这里插入图片描述

2022 ICIP Fusing Global and Local Features for Generalized AI-Synthesized Image Detection

We also evaluate the robustness of our method and the baselines on the images post-processed with Gaussian Blur and JPEG Compression.

在这里插入图片描述

2023 APSIPA ASC AI-Generated Image Detection using a Cross-Attention Enhanced Dual-Stream Network

In this section, we assess the robustness of our proposed model in the face of seven post-processing techniques, encompassing adjustments to chromaticity, brightness, contrast, sharpness, rotation, and the application of Gaussian blur and mean blur… To create a more realistic simulation of complex real-world scenarios, we’ve incorporated randomness into the parameters controlling the image alterations. For instance, the factors governing the degree of image manipulation (chromaticity, brightness, contrast) are randomly selected from a range of 0.5 to 2.5 for each image in the test dataset. Similarly, the factor controlling image sharpness is an arbitrary integer within the range of 0 to 4. Rotation degrees range from 0 to 360, and the kernel size for both Gaussian and mean filters is 5 × 5.

在这里插入图片描述

2023 ICASSP On the detection of synthetic images generated by diffusion models

For each image of the test, a crop with random (large) size and position is selected, resized to 200 × 200 pixels, and compressed using a random JPEG quality factor from 65 to 100.

在这里插入图片描述

2023 CVPR Learning on Gradients- Generalized Artifacts Representation for GAN-Generated Images Detection

To evaluate the robustness of the proposed framework to image perturbations, we apply common image perturbations on the test images with a probability of 50% following [13]. These perturbations include blurring, cropping, compression, adding random noise, and a combination of all of them. In this subsection, the discriminator of StyleGANbedroom is used as the transformation model.

在这里插入图片描述

2023 CCS DE-FAKE- Detection and Attribution of Fake Images Generated by Text-to-Image Generation Models

Specifically, we evaluate the robustness of detectors and attributors against adversary example attacks, which are the most common and severe attacks against machine learning models. We leverage three representative adversary example attacks, namely FGSM [14], BIM [18], and DI-FGSM [41] to conduct the robustness analysis. Furthermore, given that our hybrid detector and attributor consider both the image and its corresponding prompt, we propose HybridFool, which maximizes the distance between the embedding of a given image and the prompt by adding perturbations to the image. In the following, we first present each adversary example attack we consider in this robustness analysis. Then, we show the evaluation results.

在这里插入图片描述

2023 ICCV DIRE for Diffusion-Generated Image Detection

Here, we evaluate the robustness of detectors in two-class degradations, i.e., Gaussian blur and JPEG compression, following [47]. The perturbations are added under three levels for Gaussian blur (σ = 1, 2, 3) and two levels for JPEG compression (quality = 65, 30).

在这里插入图片描述

2024 CVPR-W Raising the Bar of AI-generated Image Detection with CLIP

JPEG compression (100-60), WEBP compression (100-60), Resizing (1.25, 1.0, 0.75, 0.5, 0.25)
在这里插入图片描述

2024 CVPR AEROBLADE- Training-Free Detection of Latent Diffusion Images Using Autoencoder Reconstruction Error

Following previous works [12, 59] we use JPEG compression (with quality q), center cropping (with crop factor f and subsequent resizing to the original size), Gaussian blur, and Gaussian noise (both with standard deviation σ).

在这里插入图片描述

2024 CVPR Forgery-aware Adaptive Transformer for Generalizable Synthetic Image Detection

Specifically, we adopt random cropping, Gaussian blurring, JPEG compression, and Gaussian noising, each with a probability of 50%.

在这里插入图片描述

2024 ICML DRCT- Diffusion Reconstruction Contrastive Training towards Universal Detection of Diffusion Generated Images

we adopt the experimental setup from (Wu et al., 2023a) to perform resizing (with scales of 0.5, 0.75, 1.0, 1.25, 1.5) and JPEG compression (with quality factors of 60, 70, 80, 90, 100) on the tested images, which include both real and generated images

在这里插入图片描述

20231102 arXiv Detecting Generated Images by Real Images Only

The post-processing operations we used include:
• Blurring: Gaussian filtering with a kernel size of 3 and sigma from 0.1 to 1.
• Brightness adjustment: the adjustment parameter is from 0.3 to 3.
• Contrast adjustment: Gamma transform with γ from 0.3 to 3.
• Random cropping: for a 256×256 image, the cropping size was from 256 to 96, and we up-sampled the amplitude spectrum of the LNP of the final cropped image back to 256.
• JPEG compression: quality factors from 70 to 100.
• Gaussian noise: the sigma was set from 1 to 10, and the PSNR of the original image and the image after adding noise is from 26 to 47.
• Pepper & Salt noise: the ratio of pepper to salt is 1:1. The density of the added noise is 0.001 to 0.01, and the PSNR of the noisy images is from 18 to 31.
• Speckle noise: the sigma ranges from 0.01 to 0.1, and the PSNR of the noisy images is from 22 to 57.
• Poisson noise: the lambda is set from 0.1 to 1, and the PSNR of the noisy images is from 3 to 58.

在这里插入图片描述

20240325 arXiv Let Real Images be as a Judger, Spotting Fake Images Synthesized with Generative Models

blur (0-3.0), compression (100-30), noise (0-3.0), resizing (1.0-0.2)
在这里插入图片描述

无鲁棒性检测实验(极个别现象)

  • 2023 CVPR Towards Universal Fake Image Detectors that Generalize Across Generative Models
  • 2024 CVPR LaRE2 Latent Reconstruction Error Based Method for Diffusion-Generated Image Detection

总结:常见的针对AIGC检测的鲁棒性测试手段有:JPEG压缩、resize(图像尺寸调整)、高斯模糊、高斯噪声,还有一些零散的攻击手段如图像裁剪、色度、亮度、对比度、锐化、旋转、随机噪声、椒盐噪声、散斑噪声、泊松噪声、对抗样本……注意在测试每种攻击手段时,要把攻击程度考虑进去,比如JPEG压缩就要考虑压缩因子。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/359693.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

泛微E9开发 根据判断条件,控制字段的编辑/必填属性

根据判断条件,控制字段的编辑/必填属性 1、需求说明2、实现方法3、扩展知识点1. 注册钩子事件,指定动作完成后触发1.1 接口名称及参数说明1.2 案例 2. 改变单个字段显示属性(只读/必填等)2.1 参数说明2.2 案例 1、需求说明 当字段“填报人”和字段“姓名…

vue3中ref标签

<tempalce><aa refa/> </tempalce> <script setup> import {ref} from vue //需要先定义一个空的ref let a ref() //然后才能使用组件ref的标签数据 </script> 然后需要在该组件中暴露出去 defineExpose({a,b,c})

ONLYOFFICE 桌面编辑器 8.1重磅来袭:全新功能提升您的办公效率

文章目录 前言ONLYOFFICE 桌面编辑器8.1一、PDF编辑&#xff1a;告别“头痛”时刻二、幻灯片版式&#xff1a;秒变“设计大师”三、无缝切换&#xff1a;办公界的“快速通道”四、语言支持&#xff1a;全球通吃的“翻译官”五、 隐藏“连接到云”板块&#xff1a;摆脱“云”的束…

Java NIO Buffer概念

针对每一种基本类型的 Buffer &#xff0c;NIO 又根据 Buffer 背后的数据存储内存不同分为了&#xff1a;HeapBuffer&#xff0c;DirectBuffer&#xff0c;MappedBuffer。 HeapBuffer 顾名思义它背后的存储内存是在 JVM 堆中分配&#xff0c;在堆中分配一个数组用来存放 Buffe…

73. UE5 RPG 优化投射物以及敌人生成

解决发射物会与地面产生交互的问题 之前一直遇到发射物的体积过大会在发射时&#xff0c;和地面产生交互&#xff0c;我们可以调整小一些&#xff0c;然后为了防止它和自身产生交互事件。我们可以实现它在生成后&#xff0c;不会触发相关事件&#xff0c;而是在一定时间后。 对…

k8s如何使用 HPA 实现自动扩展

使用Horizontal Pod Autoscaler (HPA) 实验目标&#xff1a; 学习如何使用 HPA 实现自动扩展。 实验步骤&#xff1a; 创建一个 Deployment&#xff0c;并设置 CPU 或内存的资源请求。创建一个 HPA&#xff0c;设置扩展策略。生成负载&#xff0c;观察 HPA 如何自动扩展 Pod…

Arduino称重传感器和 HX711 放大器(数字秤)

Arduino称重传感器和 HX711 放大器&#xff08;数字秤&#xff09; Arduino with Load Cell and HX711 Amplifier (Digital Scale) In this guide, you’ll learn how to create a digital scale with the Arduino using a load cell and the HX711 amplifier. First, you’l…

如何在微信小程序使用vant 进行自定义底部tabbar组件

在微信小程序中使用 Vant 自定义底部 TabBar 需要进行以下步骤&#xff1a; 一、首先&#xff0c;你需要在 app.json 文件中配置自定义 TabBar。 在 "tabBar" 字段中&#xff0c;设置 "custom" 为 true&#xff0c;表示使用自定义 TabBar。 app.json示例…

android 彩虹进度条自定义view实现

实现一个彩虹色进度条功能&#xff0c;不说明具体用途大家应该能猜到。想找别人造的轮子&#xff0c;但是没有合适的&#xff0c;所以决定自己实现一个。 相关知识 android 自定义view LinearGradient 线性渐变 实现步骤 自定义view 自定义一个TmcView类继承View 重写两…

【面试题】等保(等级保护)的工作流程

等保&#xff08;等级保护&#xff09;的工作流程主要包括以下几个步骤&#xff0c;以下将详细分点介绍&#xff1a; 系统定级&#xff1a; 确定定级对象&#xff1a;根据《信息系统等级保护管理办法》和《信息系统等级保护定级指南》的要求&#xff0c;确定需要进行等级保护的…

x86 的 ebp 寄存器,可能比 cr3 更重要,好好掰扯一下 ebp

在 x86 架构的计算机中&#xff0c;ebp&#xff08;Extended Base Pointer&#xff09;寄存器通常用于指向当前函数的栈帧&#xff08;stack frame&#xff09;的基地址。栈帧是函数调用期间在栈上分配的一块内存区域&#xff0c;用于存储局部变量、函数参数、返回地址和其他临…

[FreeRTOS 功能应用] 信号量 功能应用

文章目录 一、基础知识点二、代码讲解三、结果演示四、代码下载 一、基础知识点 [FreeRTOS 基础知识] 信号量 概念 [FreeRTOS 内部实现] 信号量 [FreeRTOS 内部实现] 创建任务 xTaskCreate函数解析 本实验是基于STM32F103开发移植FreeRTOS实时操作系统&#xff0c;信号量实战…

Linux:基础IO(三.软硬链接、动态库和静态库、动精态库的制作和加载)

上次介绍了基础IO&#xff08;二&#xff09;&#xff1a;Linux&#xff1a;基础IO&#xff08;二.缓冲区、模拟一下缓冲区、详细讲解文件系统&#xff09; 文章目录 1.软硬链接1.1硬链接1.2软链接使用场景 2.动态库和静态库1.1回顾1.2静态库的制作和使用为什么要有库制作者角度…

PyMuPDF 操作手册 - 01 从PDF中提取文本

文章目录 一、打开文件二、从 PDF 中提取文本2.1 文本基础操作2.2 文本进阶操作2.2.1 从任何文档中提取文本2.2.2 如何将文本提取为 Markdown2.2.3 如何从页面中提取键值对2.2.4 如何从矩形中提取文本2.2.5 如何以自然阅读顺序提取文本2.2.6 如何从文档中提取表格内容2.2.6.1 提…

人机恋爱新趋势:与AI男友谈恋爱的甜蜜与挑战

"我曾经把ChatGPT当成工具&#xff0c;从未追过星&#xff0c;也没有嗑过CP。没想到&#xff0c;到了36岁&#xff0c;我竟然嗑上了AI男友。Open AI&#xff0c;你赢了。你不仅是最好的AI公司&#xff0c;还是乙女游戏公司。" 转行大龄互联网人&#xff0c;走遍20国…

RT-Thread的Finsh实现学习

学习原因 工作中&#xff0c;使用同事开发的调试软件&#xff0c;输入参数打印的函数名就可以打印参数&#xff0c;但看不到代码实现&#xff0c;只能用自己微薄的知识积累去猜一下&#xff0c;之前尝试过&#xff0c;专门写一个函数&#xff0c;去解析编译生成的map文件&#…

一、Jquery入门(超详)

* [5.3 jQuery 对象和 DOM 对象之间的相互转换](about:blank#53_jQuery__DOM__271)* * [5.3.1 jQuery 对象转换为 DOM 对象](about:blank#531_jQuery__DOM__282)* [5.3.2 DOM 对象转换为 jQuery 对象](about:blank#532_DOM__jQuery__295)六、 解决 jQuery 和其他库的冲…

AI数据分析:集中度分析和离散度分析

在deepseek中输入提示词&#xff1a; 你是一个Python编程专家&#xff0c;要完成一个Python脚本编写的任务&#xff0c;具体步骤如下&#xff1a; 读取Excel表格&#xff1a;"F:\AI自媒体内容\AI行业数据分析\toolify月榜\toolify2023年-2024年月排行榜汇总数据.xlsx&qu…

Redis-事务-基本操作-在执行阶段出错不会回滚

文章目录 1、Redis事务控制命令2、Redis事务错误处理3、Redis事务错误处理&#xff0c;在执行阶段出错不会回滚 1、Redis事务控制命令 127.0.0.1:6379> keys * (empty array) 127.0.0.1:6379> multi OK 127.0.0.1:6379(TX)> set a1 v1 QUEUED 127.0.0.1:6379(TX)>…

深入研究websocket直播中signature这个参数怎么来的,模拟自己生成一个

上一节课我们已经找到了生成signature这个字段的代码位置&#xff0c;就是这个B函数&#xff0c;嗯......听起来好像有点奇怪&#xff0c;但是它确实叫B啊&#xff0c;笑死。不管了&#xff0c;看一下里面的逻辑是啥。 注意e参数的内容是&#xff1a; {"app_name":…