人工神经网络是什么,其应用有哪些?

人工神经网络是什么,其应用有哪些?

ANN.png

当你阅读这篇文章时,你身体的哪个器官正在考虑它?当然是大脑!但是你知道大脑是如何工作的吗?嗯,它有神经元或神经细胞,它们是大脑和神经系统的主要单位。这些神经元接收来自外部世界的感觉输入,它们对其进行处理,然后提供输出,这些输出可能充当下一个神经元的输入。

这些神经元中的每一个都以突触的复杂排列与其他神经元相连。现在,你想知道这与人工神经网络有什么关系吗?好吧,人工神经网络是以人脑中的神经元为模型的。让我们详细看看它们是什么以及它们如何学习信息。

人工神经网络

人工神经网络包含称为单元的人工神经元。这些单元排列在一系列层中,这些层共同构成了系统中的整个人工神经网络。一个层只能有十几个单位或数百万个单位,因为这取决于如何需要复杂的神经网络来学习数据集中的隐藏模式。通常,人工神经网络具有输入层、输出层以及隐藏层。输入层接收来自外部世界的数据,神经网络需要分析或了解这些数据。然后,此数据通过一个或多个隐藏层,这些隐藏层将输入转换为对输出层有价值的数据。最后,输出层以人工神经网络对所提供输入数据的响应的形式提供输出。

在大多数神经网络中,单元从一层到另一层相互连接。这些连接中的每一个都有权重,用于确定一个单元对另一个单元的影响。当数据从一个单元传输到另一个单元时,神经网络会越来越多地了解数据,最终导致输出层的输出。

神经网络架构

人类神经元的结构和操作是人工神经网络的基础。它也被称为神经网络或神经网络。人工神经网络的输入层是第一层,它接收来自外部源的输入并将其释放到隐藏层,即第二层。在隐藏层中,每个神经元接收来自前一层神经元的输入,计算加权总和,并将其发送到下一层的神经元。这些连接是加权的,意味着通过为每个输入分配不同的权重或多或少地优化了上一层输入的效果,并在训练过程中通过优化这些权重来调整这些权重以提高模型性能。

人工神经元与生物神经元

人工神经网络的概念来自动物大脑中发现的生物神经元,因此它们在结构和功能方面有很多相似之处。

  • 结构:人工神经网络的结构受到生物神经元的启发。生物神经元有一个细胞体或体体来处理冲动,树突来接收它们,轴突将它们转移到其他神经元。人工神经网络的输入节点接收输入信号,隐藏层节点计算这些输入信号,输出层节点通过使用激活函数处理隐藏层的结果来计算最终输出。
Biological Neuron 生物神经元Artificial Neuron 人工神经元
Dendrite 树突Inputs 输入
Cell nucleus or Soma 细胞核或相马Nodes 节点
Synapses 突触Weights 权重
Axon 轴突Output 输出
  • 突触:突触是生物神经元之间的纽带,能够将脉冲从树突传递到细胞体。突触是将人工神经元中的一层节点连接到下一层节点的权重。链节的强度由重量值决定。
  • 学习:在生物神经元中,学习发生在细胞体核或体细胞核中,细胞核或体细胞核有助于处理冲动。如果冲动足够强大以达到阈值,则会产生动作电位并穿过轴突。突触可塑性使这成为可能,突触可塑性代表了突触随着时间的推移而变强或变弱以响应其活动变化的能力。在人工神经网络中,反向传播是一种用于学习的技术,它根据预测结果和实际结果之间的误差或差异来调整节点之间的权重。
Biological Neuron 生物神经元Artificial Neuron 人工神经元
Synaptic plasticity 突触可塑性Backpropagations 反向传播
  • 激活:在生物神经元中,激活是神经元的放电速率,当冲动足够强以达到阈值时发生。在人工神经网络中,一种称为激活函数的数学函数将输入映射到输出,并执行激活。

从生物神经元到人工神经元

How do Artificial Neural Networks learn? 人工神经网络如何学习?

人工神经网络使用训练集进行训练。例如,假设您要教 ANN 识别猫。然后,它显示了数千张不同的猫图像,以便网络可以学习识别猫。一旦神经网络使用猫的图像进行了足够的训练,那么你需要检查它是否能正确识别猫的图像。这是通过使 ANN 通过确定它们是否是猫图像来对它提供的图像进行分类来完成的。人工神经网络获得的输出由人工提供的图像是否为猫图像的描述来证实。如果 ANN 识别不正确,则使用反向传播来调整它在训练期间学到的任何内容。反向传播是通过根据获得的错误率微调以 ANN 单元为单位的连接权重来完成的。这个过程一直持续到人工神经网络能够以最小的错误率正确识别图像中的猫。

人工神经网络有哪些类型?

  • 前馈神经网络:前馈神经网络是最基本的人工神经网络之一。在此 ANN 中,提供的数据或输入沿单一方向传输。它通过输入层进入 ANN,通过输出层退出,而隐藏层可能存在也可能不存在。因此,前馈神经网络只有前向传播波,通常没有反向传播。
  • 卷积神经网络:卷积神经网络与前馈神经网络有一些相似之处,其中单元之间的连接具有权重,这些权重决定了一个单元对另一个单元的影响。但是 CNN 具有一个或多个卷积层,该卷积层对输入使用卷积运算,然后将以输出形式获得的结果传递到下一层。CNN在语音和图像处理方面有应用,这在计算机视觉中特别有用。
  • 模块化神经网络:模块化神经网络包含一组不同的神经网络,这些神经网络独立工作以获得输出,它们之间没有交互。与其他网络相比,每个不同的神经网络通过获得独特的输入来执行不同的子任务。这种模块化神经网络的优点是它将一个庞大而复杂的计算过程分解为更小的组件,从而降低其复杂性,同时仍能获得所需的输出。
  • 径向基函数 神经网络:径向基函数是那些考虑点相对于中心的距离的函数。RBF 函数有两层。在第一层中,输入被映射到隐藏层中的所有径向基函数,然后输出层在下一步中计算输出。径向基函数网络通常用于对表示任何潜在趋势或函数的数据进行建模。
  • 递归神经网络:递归神经网络保存层的输出,并将该输出反馈给输入,以更好地预测层的结果。RNN 中的第一层与前馈神经网络非常相似,一旦计算出第一层的输出,循环神经网络就会启动。在这一层之后,每个单元将记住上一步中的一些信息,以便它可以在执行计算时充当存储单元。

工神经网络的应用

  1. 社交媒体:人工神经网络在社交媒体中被大量使用。例如,让我们以 Facebook 上的“您可能认识的人”功能为例,该功能会推荐您在现实生活中可能认识的人,以便您可以向他们发送好友请求。好吧,这种神奇的效果是通过使用人工神经网络来实现的,该神经网络可以分析您的个人资料、您的兴趣、您当前的朋友以及他们的朋友以及各种其他因素来计算您可能认识的人。机器学习在社交媒体中的另一个常见应用是面部识别。这是通过在人的脸上找到大约 100 个参考点,然后使用卷积神经网络将它们与数据库中已有的参考点进行匹配来完成的。
  2. 营销和销售:当您登录亚马逊和 Flipkart 等电子商务网站时,他们会根据您之前的浏览历史记录推荐您要购买的产品。同样,假设您喜欢意大利面,那么 ZomatoSwiggy 等会根据您的口味和以前的订单历史向您显示餐厅推荐。这适用于所有新时代的营销领域,如图书网站、电影服务、酒店网站等,它是通过实施个性化营销来完成的。这使用人工神经网络来识别客户的好恶、以前的购物历史等,然后相应地定制营销活动。
  3. 医疗保健:人工神经网络在肿瘤学中用于训练算法,这些算法可以在微观水平上以与训练有素的医生相同的精度识别癌组织。各种罕见疾病可能表现为身体特征,可以通过对患者照片进行面部分析来识别其过早阶段。因此,人工神经网络在医疗环境中的全面实施,只能提高医学专家的诊断能力,并最终导致全球医疗质量的整体提高。
  4. 个人助理:我相信你们都听说过Siri,Alexa,Cortana等,并且还根据您拥有的手机听说过它们!!这些是个人助理和语音识别的一个例子,它使用自然语言处理与用户交互并相应地制定响应。自然语言处理使用人工神经网络来处理这些个人助理的许多任务,例如管理语言语法、语义、正确的语音、正在进行的对话等。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

资源分享

图片

大模型AGI学习包

图片

图片

资料目录

  1. 成长路线图&学习规划
  2. 配套视频教程
  3. 实战LLM
  4. 人工智能比赛资料
  5. AI人工智能必读书单
  6. 面试题合集

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

1.成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

图片

2.视频教程

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩

图片

3.LLM

大家最喜欢也是最关心的LLM(大语言模型)

图片

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/361979.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python笔记 json数据格式的转换

一、json数据格式 1.什么是json json是一种轻量级的数据交互格式。可以按照json指定的格式去组织和封装数据 json本质上是一个带有特定格式的字符串 主要功能:json就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互。类似…

基于SpringBoot音乐网站与分享平台详细设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 Java精品实战案例《600套》 2023-2025年最值得选择的Java毕业设计选题大全&#xff1…

Xilinx FPGA:vivado实现串口的接收端

补充一些串口里用到的数值的相关知识点 接收端串口时序图: 程序设计: timescale 1ns / 1ps /串口接收端 串行转并行 module uart_rx(input sys_clk ,input rst_n ,input rx_data , //输入…

JDBC以及事务

1、JDBC是什么? JDBC是Java DataBase Connectivity(Java语言链接数据库) 2、JDBC的本质 JDBC是一套接口,有调用者(java工程师)和实现者(SUN公司)(实现类被称为驱动&…

electron线上跨域问题

一、配置background.js win new BrowserWindow({webPreferences: {nodeIntegration: true, // 使渲染进程拥有node环境//关闭web权限检查,允许跨域webSecurity: false,// Use pluginOptions.nodeIntegration, leave this alone// See nklayman.github.io/vue-cli-p…

终于找到能在mac上正常保存密码的navicat了- navicat v17.0.9

找了一晚上,终于找到能在mac上正常保存密码的navicat了。 免费分享,不用关注公众号,不用看广告。如果帮助到你,可以的话帮忙给 https://github.com/gone-io/gone 点个星星。 链接: https://pan.baidu.com/s/1ZvGqSMNcv8uMCIpwf0…

Charls数据库+预测模型发二区top | CHARLS等七大老年公共数据库周报(6.19)

七大老年公共数据库 七大老年公共数据库共涵盖33个国家的数据,包括:美国健康与退休研究 (Health and Retirement Study, HRS);英国老龄化纵向研究 (English Longitudinal Study of Ageing, ELSA);欧洲健康、…

ThreadX简介

文章目录 1. 摘要2. ThreadX的特性2.1 免费开源2.2 安全认证级别高2.3 组件完善2.4 实时性高2.5 支持多核2.6 支持应用动态加载2.7 代码符合MISAR规范2.8 文档全面,例程丰富2.9 集成方便3. 移植示例4. 产品应用示例1. 摘要 在嵌入式系统领域,实时性能、系统稳定性以及广泛的…

Windows 10,11 Server 2022 Install Docker-Desktop

docker 前言 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。 docker-compose Compose 是用于定义和运行…

基于大语言模型的多意图增强搜索

随着人工智能技术的蓬勃发展,大语言模型(LLM)如Claude等在多个领域展现出了卓越的能力。如何利用这些模型的语义分析能力,优化传统业务系统中的搜索性能是个很好的研究方向。 在传统业务系统中,数据匹配和检索常常面临…

LangChain之Agent代理(下)

LangChain之Agent代理 OpenAI Functions Agent概述配置环境变量基本使用实际应用示例 OpenAI Tools Agent概述基本使用实际应用示例 ReAct Agent概述Google搜索APIinitialize_agentcreate_react_agent Structured Chat AgentSelf-Ask with Search Agent OpenAI Functions Agent…

stl之string

构造函数 void test1() {string s1;//不传参cout << s1 << endl;string s2("123456");cout << s2 << endl;string s3(s2);cout << s3 << endl;string s4(s2, 1, 5);cout << s4 << endl;string s5("123456&quo…

LLM vs SLM 大模型和小模型的对比

语言模型是能够生成自然人类语言的人工智能计算模型。这绝非易事。 这些模型被训练为概率机器学习模型——预测适合在短语序列中生成的单词的概率分布&#xff0c;试图模仿人类智能。语言模型在科学领域的重点有两个方面&#xff1a; 领悟情报的本质。 并将其本质体现为与真实…

gin-vue-amdin 新增路由

1&#xff1a;在api目录的example 下新建controller 层如下图&#xff08;&#xff09;&#xff1a; 在enter.go 中 加入 这个新建的结构体&#xff1a; 2&#xff1a;在router 的example 文件夹下 新建对应的路由文件 3&#xff1a;在initlize 的router 中 添加对应的代码&a…

推动多模态智能模型发展:大型视觉语言模型综合多模态评测基准

随着人工智能技术的飞速发展&#xff0c;大型视觉语言模型&#xff08;LVLMs&#xff09;在多模态应用领域取得了显著进展。然而&#xff0c;现有的多模态评估基准测试在跟踪LVLMs发展方面存在不足。为了填补这一空白&#xff0c;本文介绍了MMT-Bench&#xff0c;这是一个全面的…

【数学建模】——【python库】——【Pandas学习】

专栏&#xff1a;数学建模学习笔记 pycharm专业版免费激活教程见资源&#xff0c;私信我给你发 python相关库的安装&#xff1a;pandas,numpy,matplotlib&#xff0c;statsmodels 总篇&#xff1a;【数学建模】—【新手小白到国奖选手】—【学习路线】 第一卷&#xff1a;【数学…

互联网信息服务算法备案流程与要求

一、备案申请的办理流程 企业通过网信办的互联网信息服务算法备案系统&#xff08;https://beian.cac.gov.cn/#/index&#xff09;提交算法备案申请。填报信息包括三部分&#xff0c;分别是算法主体信息、产品及功能信息、算法信息。备案中比较重要的文件包括主体信息中的《落…

▶《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch5 蒙特卡洛方法【model-based ——> model-free】

PPT 截取必要信息。 课程网站做习题。总体 MOOC 过一遍 1、视频 学堂在线 习题 2、 过 电子书 是否遗漏 【下载&#xff1a;本章 PDF GitHub 页面链接 】 【第二轮 才整理的&#xff0c;忘光了。。。又看了一遍视频】 3、 过 MOOC 习题 看 PDF 迷迷糊糊&#xff0c; 恍恍惚惚。…

深度学习 - Transformer 组成详解

整体结构 1. 嵌入层&#xff08;Embedding Layer&#xff09; 生活中的例子&#xff1a;字典查找 想象你在读一本书&#xff0c;你不认识某个单词&#xff0c;于是你查阅字典。字典为每个单词提供了一个解释&#xff0c;帮助你理解这个单词的意思。嵌入层就像这个字典&#xf…

道路救援入驻派单小程序开源版开发

道路救援入驻派单小程序开源版开发 1、用户立即救援 2、后台收到救援通知&#xff0c;派单救援师傅. 道路救援入驻派单小程序通常会包含一系列功能&#xff0c;旨在方便救援服务提供商、用户和后台管理系统之间的交互。以下是一个可能的功能列表&#xff1a; 用户端功能&…