OCR训练和C#部署英文字符训练

      PaddleOCR是一个基于飞桨开发的OCR(Optical Character Recognition,光学字符识别)系统。其技术体系包括文字检测、文字识别、文本方向检测和图像处理等模块。以下是其优点:

高精度:PaddleOCR采用深度学习算法进行训练,可以在不同场景下实现高精度的文字检测和文字识别。

多语种支持:PaddleOCR支持多种语言的文字识别,包括中文、英文、日语、韩语等。同时,它还支持多种不同文字类型的识别,如手写字、印刷体、表格等。

高效性:PaddleOCR的训练和推理过程都采用了高效的并行计算方法,可大幅提高处理速度。同时,其轻量化设计也使得PaddleOCR能够在移动设备上进行部署,适用于各种场景的应用。

易用性:PaddleOCR提供了丰富的API接口和文档说明,用户可以快速进行模型集成和部署,实现自定义的OCR功能。同时,其开源代码也为用户提供了更好的灵活性和可扩展性。

鲁棒性:PaddleOCR采用了多种数据增强技术和模型融合策略,能够有效地应对图像噪声、光照变化等干扰因素,并提高模型的鲁棒性和稳定性。

总之,PaddleOCR具有高精度、高效性、易用性和鲁棒性等优点,为用户提供了一个强大的OCR解决方案。

一、环境安装

1.Anaconda安装
        打开Anaconda官网去下载然后安装,这个在网上很多教程根据他们安装就行
 2.cuda,cudnn安装  

去这里找入口安装对应的cuda和cudnn版本  cuda各个版本的Pytorch下载网页版,模型转化工具,免费gpt链接_cuda国内镜像下载网站-CSDN博客

和yolov5配置跑通基本流程一样

ppocr环境

pip install requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

二、下载训练源码:

GitHub - PaddlePaddle/PaddleOCR: Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)icon-default.png?t=N7T8https://github.com/PaddlePaddle/PaddleOCR/tree/main

最好下载这个 其他版本可能报错

这个版本的没有标注的程序所以你还需要下载一个r2.6的把里面的PPOCRlabel复制到你下载的main版本的OCR。

验证环境是否跑通

        进入往下翻GitHub - PaddlePaddle/PaddleOCR: Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)icon-default.png?t=N7T8https://github.com/PaddlePaddle/PaddleOCR/tree/main

下载压缩然后放到下方文件夹中

打开py终端输入指令

python tools/infer/predict_system.py  --image_dir="C:\Users\User\Desktop\test.jpg" --det_model_dir="./inference_model/en_PP-OCRv3_det_infer/" --rec_model_dir="./inference_model/en_PP-OCRv3_rec_infer"

效果大概就是这个样子 

环境没问题的话就可以开始制作自己的数据集训练了

三、数据集制作

如果你的环境没问题,那么进入PPOCRLabel中直接右键运行,

网上又说用这个   python PPOCRLabel.py --lang ch指令的,我用不了这个,报错,所以这个指令用不了的可以直接右键run   PPOCRLabel.py 文件即可

如果报错

就在 PPOCRLabel.py 文件头上加入

import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

  然后右键运行 PPOCRLabel.py

  打开后是这样的

 

导入图片,再点击自动保存

旁边改成你需要标注的字符

标注后你的数据集文件夹中会生成这些文件

 全部打标完成之后,点击文件选择导出标记结果,再点击文件选择导出识别结果,完成后再文件夹多出四个文件fileState,Label,rec_gt, crop_img。

其中crop_img中的图片用来训练文字识别模型,

fileState记录图片的打标完成与否,

Label为训练文字检测模型的标签,

rec_gt为训练文字识别模型的标签。

如果是文字文本识别标注那你可以直接点击左下角那里进行自动标注

然后数据集划分

python gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath ../train_data/drivingData

在终端运行上述指令 文件路劲在PPOCRLabel文件中

运行后数据集就会被划分

生成的det   和rec文件打开后为如下

四、开始训练字符模型

下载训练模型

GitHub - PaddlePaddle/PaddleOCR: Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices) - PaddlePaddle/PaddleOCRicon-default.png?t=N7T8https://github.com/PaddlePaddle/PaddleOCR/tree/main

最好三个都下载下来,也可以只下载检测和识别两个

下载好解压,放入

配置训练文件

打开后你需要手动修改数据集路径

这里有一个是多少代保存一次,你可以设置为一代保存一次 改为1即可

py终端运行如下指令就可以开始运行了

python tools/train.py -c configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml

运行完毕了模型会报错在这里

五、测试

python tools/infer_det.py -c configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml -o Global.pretrained_model=output/ch_db_driving/iter_epoch_400.pdparams Global.infer_img="C:\Users\User\Desktop\PaddleOCR-release-2.6\train_data\det\test\0201_1 (3).jpg"

六、训练rec识别模型

和上面的检测det模型的训练方式一样

这里更改多少代 保存一次

七、运行

python tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml

八、然后测试

和上面的方法一样,只是把模型换成rec模型

python tools/infer_det.py -c configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml -o Global.pretrained_model=output/en_db_driving/iter_epoch_400.pdparams Global.infer_img="C:\Users\User\Desktop\PaddleOCR-release-2.6\train_data\det\test\0201_1 (3).jpg"

你可以用如下代码进行批量推理和模型测试

中间那个是分类模型 你可以在官网上直接下载

from paddleocr import PaddleOCR
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from paddleocr import PaddleOCR, draw_ocr
import os
import skimagefont = cv2.FONT_HERSHEY_SIMPLEX# 参数依次为`ch`, `en`, `french`, `german`, `korean`, `japan`。
ocr = PaddleOCR(use_angle_cls=True, lang="en", use_gpu=False,rec_model_dir='./models/en_PP-OCRv3_rec_infer/',cls_model_dir='./models/ch_ppocr_mobile_v2.0_cls_infer/',det_model_dir='./models/en_PP-OCRv3_det_infer/')  # need to run only once to download and load model into memory
def OCRsspt_en(img_path,out_path):for filename in os.listdir(img_path):img = os.path.join(img_path,filename)print(filename)# ims = np.ndarray(range(img))# img_flor=cv2.imread(ims,flags=1)# img_flor=Image.open(img)# img_flor = skimage.io.imread(img)result = ocr.ocr(img, cls=True)# 显示结果image = Image.open(img).convert('RGB')boxes = [line[0] for line in result[0]]txts = [line[1][0] for line in result[0]]scores = [line[1][1] for line in result[0]]im_show = draw_ocr(image, boxes, txts, scores, font_path='./simfang.ttf')im_show = Image.fromarray(im_show)output_path = os.path.join(out_path, f"{os.path.splitext(filename)[0]}s.bmp")im_show.save(output_path)print(txts)print("####################OK#####################")img_path = "H:\\DL\\OCRrelse\\PaddleOCR-release-2.6\\train_DATA\\jpegs"
out_path = "H:\\DL\\OCRrelse\\PaddleOCR-release-2.6\\inference_results\\dete"
OCRsspt_en(img_path,out_path)

效果如下

九、C#部署(不完善)

官方部署包  https://github.com/sdcb/PaddleSharp

1.你需要下载ocr的包以及其他工具包

将你训练的两个模型导入进去,根据官方的部署包进行修改,读取模型

就像这样

然后就可以进行ocr识别了

需要其他操作,都可以自己加

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/363655.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java校园跑腿小程序校园代买帮忙外卖源码社区外卖源码

🔥校园跑腿与外卖源码揭秘🔥 🚀 引言:为何需要校园跑腿与外卖源码? 在快节奏的校园生活里,学生们对于便捷、高效的服务需求日益增长。校园跑腿和外卖服务成为了解决这一需求的热门选择。然而,…

爬虫笔记17——selenium框架的使用

selenium框架的使用 1、python程序安装selenium框架2、下载Chrome谷歌驱动3、selenium的基本使用4、多个标签页切换顺序混乱的问题 1、python程序安装selenium框架 # 在安装过程中最好限定框架版本为4.9.1 # pip install selenium 没有制定版本,非镜像下载也会比较…

秋招突击——第七弹——Redis快速入门

文章目录 引言Redis是什么 正文对象String字符串面试重点 List面试考点 压缩列表ZipList面试题 Set面试题讲解 Hash面试重点 HASHTABLE底层面试考点 跳表面试重点 ZSET有序链表面试重点 总结 引言 在项目和redis之间,我犹豫了一下,觉得还是了解学习一下…

设计模式5-策略模式(Strategy)

设计模式5-策略模式 简介目的定义结构策略模式的结构要点 举例说明1. 策略接口2. 具体策略类3. 上下文类4. 客户端代码 策略模式的反例没有使用策略模式的代码 对比分析 简介 策略模式也是属于组件协作模式一种。现代软件专业分工之后的第一个结果是框架语音应用程序的划分。组…

金顺心贸易有限公司简介

金顺心贸易有限公司成立于2015年,注册地位于风景如画的广西壮族自治区防城港市东兴市。 金顺心贸易如他们的名字一样,有着实实在在的业绩和口碑的。他们专注于国际贸易,主营越南进口食品:果汁饮料、春卷皮、调味品、汤底、米粉、…

RabbitMQ消息队列 安装及基本介绍

一.MQ介绍 Message Queue (MQ)是一种跨进程的通信机制,用于在系统之间进行传递消息。MQ作为消息中间件,可以进行异步处理请求,从而减少请求响应时间和解耦 1.1 应用场景 1.1.1 系统之间通过MQ进行消息通信&#xff0…

动手学深度学习(Pytorch版)代码实践 -计算机视觉-41目标检测数据集

41目标检测数据集 import os import pandas as pd import torch import torchvision import matplotlib.pylab as plt from d2l import torch as d2l# 数据集下载链接 # http://d2l-data.s3-accelerate.amazonaws.com/banana-detection.zip# 读取数据集 #save def read_data_b…

Windows 系统 Solr 8.11.3 安装详细教程(最新)

Windows 系统 Solr 8.11.3 安装详细教程 说明什么是Solr下载与解压如何启动启动命令:浏览器中打开dashboard其他命令查看关闭命令 说明 本次只是简单安装,为了在项目中使用,如果在公开服务器中安装需要更改开放端口,配置权限等。 …

【PL理论深化】(8) Ocaml 语言:元组和列表 | 访问元组中的元素 | 列表中的 head 和 tail | 基本列表操作符

💬 写在前面:本章我们将探讨 OCaml 中的元组(tuple)和列表(list),它们是函数式编程语言中最常用的数据结构。 目录 0x00 元组(Tuple) 0x01 访问元组中的元素 0x02 列表&…

《单片机》期末考试复习-学习笔记总结

题型 问答题(15分)编程题(65分)编程题1(20分)编程题2(45分)设计题(20分)一、问答题 1.1.单片机概念和特点 1.2. 51单片机的中断结构 1.3.主从式多机通讯的概念及其工作原理 多机通信是指两台以上计算机之间的数据传输,主从式多机通信是多机通信系统中最简单的一种,…

SerDes介绍以及原语使用介绍(2)OSERDESE2原语仿真

文章目录 前言一、SDR模式1.1、设计代码1.2、testbench代码1.3、仿真分析 二、DDR模式下2.1、设计代码2.2、testbench代码2.3、仿真分析 三、OSERDES2级联3.1、设计代码3.2、testbench代码3.3、代码分析 前言 上文通过xilinx ug471手册对OSERDESE有了简单的了解,接…

PHP爬虫类的并发与多线程处理技巧

PHP爬虫类的并发与多线程处理技巧 引言: 随着互联网的快速发展,大量的数据信息存储在各种网站上,获取这些数据已经成为很多业务场景下的需求。而爬虫作为一种自动化获取网络信息的工具,被广泛应用于数据采集、搜索引擎、舆情分析…

柔性数组(flexible array)

柔性数组从C99开始支持使用 1.柔性数组的概念 概念: 结构体中,结构体最后一个元素允许是未知大小的数组,这就叫[柔性数组]的成员 struct S {int n;char arr[]; //数组大小未知(柔性数组成员) }; 柔性数组的特点: 结构体中柔性…

九、(正点原子)Linux定时器

一、Linux中断简介 1、中断号 每个中断都有一个中断号,通过中断号即可区分不同的中断,有的资料也把中断号叫做中断线。在 Linux 内核中使用一个 int 变量表示中断号。在Linux中,我们可以使用已经编写好的API函数来申请中断号,定义…

基于公有云部署wordpress

云平台选择 腾讯云 阿里云 华为云 项目部署 一、架构讲解 1.1、定义与组成 LNMP是Linux、Nginx、MySQL(或MariaDB)和PHP(或Perl、Python)的首字母缩写,代表在Linux系统下使用Nginx作为Web服务器,MySQL作为…

ai轨迹过京东m端

声明(a15018601872) 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 本…

Unity Animator 运行时修改某个动画状态的播放速度

1.添加动画参数,选择需要动态修改速度的动画状态 2.在属性面板种设置速度倍速参数

自然语言处理(NLP)—— 深度学习

1. 词嵌入(Embeddings) 1.1 词嵌入的基本概念 词嵌入(Embeddings)是一种将词语映射到高维空间(比如N300维)的技术,使得词语之间的欧几里得距离与它们的语义距离相关联。这意味着在这个向量空间…

windows MSVC编译安装libcurl

$ git clone https://github.com/curl/curl.git $ cd curl/winbuild依照curl/winbuild/README.md的指示, 启动visual studio的命令行工具,这里要注意别选错. 如果要编译出x64版本的libcurl,就用x64的命令行工具;如果要编译出x86…

论文学习:基于知识图谱的RAG进行客服问答

1.简介 文章名称: Retrieval-Augmented Generation with Knowledge Graphs for Customer Service Question Answering(基于知识图谱的RAG进行客服问答) 2.摘要ABSTRACT 在客户服务技术支持中,迅速准确地检索相关的过往问题对于有…