LangGPT:高质量提示词框架

题目:LangGPT: Rethinking Structured Reusable Prompt Design Framework for LLMs from the Programming Language
作者: Ming Wang; Yuanzhong Liu; Xiaoming Zhang; Songlian Li; Yijie Huang; Chi Zhang; Daling Wang; Shi Feng; Jigang Li
DOI: 10.48550/arXiv.2402.16929
摘要: LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to effectively instruct LLMs poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat fragmented optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structured design template, incurring high learning costs and resulting in low reusability. Inspired by structured reusable programming languages, we propose LangGPT, a dual-layer prompt design framework as the programming language for LLMs. LangGPT has an easy-to-learn normative structure and provides an extended structure for migration and reuse. Experiments illustrate that LangGPT significantly enhances the capacity of LLMs to produce responses of superior quality compared to baselines. Moreover, LangGPT has proven effective in guiding LLMs to generate high-quality prompts. We have built a community on LangGPT to facilitate the tuition and sharing of prompt design. We also analyzed the ease of use and reusability of LangGPT through a community user survey.
GitHub: 2024/6/28 21:04:26

📜 研究核心

⚙️ 内容

img

研究团队开发了一种名为LangGPT的框架,旨在为大型语言模型(LLMs)提供结构化且可重用的提示设计方法。LangGPT的设计灵感来源于编程语言的结构化特性,以解决非AI专家在为LLMs设计高效指令时面临的挑战。该框架通过定义一套标准模块和基本元素,以及扩展模块和自定义元素,提升了提示设计的通用性和复用性。

💡 创新点

  • 结构化双层设计:LangGPT引入了一个类似面向对象编程的结构化双层框架,便于非专业用户学习和应用。

  • 扩展模块与自定义元素:允许用户根据特定应用场景需求,灵活添加新的模块或元素,从而提升框架的适应性和灵活性。

  • 社区支持:建立了LangGPT社区,促进提示设计的交流和共享,增强了框架的实用性和生态建设。

  • 实验验证:通过在写作和角色扮演场景下与用户构建的任务助手对比实验,证明了LangGPT能显著提高LLMs生成高质量响应的能力。

🧩 不足

  • 泛化能力:对于未涵盖的应用场景,其效果可能受限,需要更多领域知识和模块定制。

  • 学习成本:虽然设计为易学,但新用户仍需时间掌握如何有效利用扩展模块和自定义元素。

  • 优化空间:未来可进一步减少Token消耗,并增加对第三方工具的支持,提升效率和兼容性。

🔁 研究内容

💧 数据

实验数据来源于用户在LangGPT社区构建并分享的五种任务助手,涉及写作和角色扮演两大类应用场景。这些数据反映了真实世界的使用情况,增强了实验的有效性和普适性。

👩🏻‍💻 方法

  • 基础模块设计:定义了如Profile(角色设定)、Goal(目标)、Constraint(约束条件)、Workflow(工作流程)、Style(风格)等模块。

  • 扩展机制:允许用户根据需求自定义模块和元素,以适应更广泛的应用场景。

  • 设计流程:提供了设计模板和流程图,帮助用户快速分析需求,高效创建高质量提示。

🔬 实验

本文介绍了作者进行的两个方面的实验:任务执行能力和语言模型(LLM)的可用性。在每个场景中,选择了五个由用户构建并共享的任务特定助手。为了比较,选择了两种基线方法:仅包含指令的提示和基于CRISPE框架的设计规则。结果表明,这些方法都存在一些缺陷,因此设计了LangGPT。此外,还需要验证提示诱导LLM的能力,这是提示设计最重要的目的。

在大型语言模型方面,使用了不同的模型进行了实验,并给出了它们的大小。对于评价指标,由于任务场景的复杂性,缺乏客观的评价指标。因此,通过人类评价和LLM评价来评估LLM执行任务的能力。为确保评价的合理性,为两个场景定义了评价标准。对于写作任务,评估者将评估LLM在执行任务方面的有效性,从三个维度进行评估:文本连贯性、格式规范性和内容丰富度。对于角色扮演任务,也设计了三个维度的评价指标:语言风格、特征相关性和主题一致性。

结果表明,LangGPT比其他方法更好地诱导LLM执行任务。此外,还发现某些具有严格安全限制的LLM会在回答有关自夸和狂妄的问题时拒绝回答。LangGPT可以使这些LLM意识到这只是说话的方式而不是真正有害的行为,并引导他们回答。而其他两种基线方法则无法做到这一点。

为了评估LangGPT的易用性,作者在一个在线社区中进行了用户调查。问卷包括关于LangGPT体验的完整问题,以确保答案的质量。问卷中还包括一个关于易用性的评分问题。结果显示,87.81%的用户给了3分或更高的分数,这表明用户对LangGPT的易用性表示认可。此外,LangGPT在用户调查中的整体满意度得分为8.48分(满分10分)。

最后,为了更直观地展示LangGPT的效果,作者从实验中筛选出了一些具体案例。除了直接效果比较外,还尝试使用LangGPT指导LLM生成高质量的提示。例如,在MBTI评估提示的生成中,如果直接询问LLM,可能会被拒绝。但是,LangGPT可以指导LLM生成无害且高质量的提示。

test1
test2

📜 结论

实验表明,LangGPT能够显著增强LLMs产生高质量响应的能力,同时提升了提示设计的效率和可复用性。社区用户的反馈证实了其易用性和复用价值。未来研究将致力于框架的进一步优化和扩展。

🤔 个人总结

LangGPT的提出是一个重要的进步,它通过结构化的提示设计框架降低了LLMs使用的门槛,尤其对非专业人士来说。然而,如何更好地引导用户理解和应用扩展模块,以及如何确保框架在不断变化的应用需求中保持先进性和适用性,是未来可以深入探索的方向。此外,考虑跨语言和文化的适应性,以及如何集成更多的自动化优化工具,也是潜在的改进方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/363991.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【排序算法】—— 希尔排序

目录 一、希尔排序原理 二、希尔排序的思路 三、希尔排序为什么快 四、如何取增量 五、源码 希尔排序是简单插入排序的一种升级版,它也是用了插入的思想,而插入排序相比冒泡排序和选择排序的效率要高的多,再将它优化为希尔排序后效率跟原…

【C++11(二)】lambda表达式和可变参数模板

一、可变参数模板 C11的新特性可变参数模板 能够让您创建可以接受 可变参数的函数模板和类模板 // Args是一个模板参数包&#xff0c;args是一个函数形参参数包 // 声明一个参数包Args...args&#xff0c;这个参数包中可以包含0到任意个模板参数。 template <class ...Arg…

智慧记账,轻松管理,让借还款明细一目了然,一键导出

在繁忙的生活中&#xff0c;财务记账管理往往成为我们的一大难题。尤其是面对频繁的借还款项&#xff0c;如何快速、准确地记录每一笔收支明细&#xff0c;并确保数据的清晰、完整&#xff0c;成为许多人关注的焦点。现在&#xff0c;我们为您带来一款全新的记账管理工具——晨…

【第三方JSON库】org.json.simple用法初探—Java编程【Eclipse平台】【不使用项目管理工具】【不添加依赖解析】

本文将重点介绍&#xff0c;在不使用项目管理工具&#xff0c;不添加依赖解析情况下&#xff0c;【第三方库】JSON.simple库在Java编程的应用。 JSON.simple是一种由纯java开发的开源JSON库&#xff0c;包含在JSON.simple.jar中。它提供了一种简单的方式来处理JSON数据和以JSO…

有趣的仿神经猫html5圈小猫游戏源码

有趣的仿神经猫html5圈小猫游戏源码,点击小圆点&#xff0c;围住小猫游戏。猫已经跑到地图边缘&#xff0c;你输了。内含json数据&#xff0c;部署到服务器方可运行 微信扫码免费获取源码

Kafka 位移

Consumer位移管理机制 将Consumer的位移数据作为一条条普通的Kafka消息&#xff0c;提交到__consumer_offsets中。可以这么说&#xff0c;__consumer_offsets的主要作用是保存Kafka消费者的位移信息。使用Kafka主题来保存位移。 消息格式 位移主题就是普通的Kafka主题。也是…

Type-C接口OTG转接器的应用与发展

随着科技的飞速发展&#xff0c;智能移动设备已成为我们生活中不可或缺的一部分。而在这些设备的连接与数据传输中&#xff0c;Type-C接口以其高效、便捷的特性逐渐占据了主导地位。OTG&#xff08;On-The-Go&#xff09;技术则进一步扩展了Type-C接口的功能&#xff0c;使得设…

JavaSE主要内容(全套超完整)

一、为什么选择Java&#xff08;Java的优势&#xff09; 1、应用面广&#xff1a; 相较于其他语言&#xff0c;Java的应用面可谓是非常广&#xff0c;这得益于他的跨平台性和其性能的稳定性。他在服务器后端&#xff0c;Android应用开发&#xff0c;大数据开发&#xf…

鼠尾草(洋苏草)

鼠尾草&#xff08;Salvia japonica Thunb.&#xff09;&#xff0c;又名洋苏草、普通鼠尾草、庭院鼠尾草&#xff0c;属于唇形科鼠尾草属多年生草本植物。鼠尾草以其独特的蓝紫色花序和长而细密的叶片为特点&#xff0c;常用于花坛、庭院和药用植物栽培。 鼠尾草的名字源自于…

25考研:今年初试时间比去年更早了?

过去5年考研初试时间安排如下&#xff1a; 24考研&#xff1a;2023年12月23-24日&#xff08;倒数第二个周末&#xff09; 23考研&#xff1a;2022年12月24-25日&#xff08;倒数第二个周末&#xff09; 22考研&#xff1a;2021年12月25-26日&#xff08;最后一个周末&#xf…

Al+医学,用这个中文多模态医学大模型帮你看胸片

随着人工智能技术的飞速发展&#xff0c;AI 在医学领域的应用已经成为现实。特别是在医学影像诊断方面&#xff0c;AI 大模型技术展现出了巨大的潜力和价值&#xff0c;但目前针对中文领域医学大多模态大模型还较少。 今天马建仓为大家介绍的这款 XrayGLM&#xff0c;就是由澳…

浅谈安科瑞ACRELCLOUD-1200光伏发电系统在建筑节能中的应用

摘要&#xff1a;21世纪以来&#xff0c;随着不可再生能源的逐渐减少&#xff0c;人们越来越重视能源的利用率&#xff0c;不断开发绿色能源。通过光伏发电系统&#xff0c;能够提升能源利用率&#xff0c;减少不可再生能源的开发。同时&#xff0c;也能加强我国建筑节能系统的…

wsl2收缩虚拟磁盘,减少空间占用

一、说明 由于WSL2使用的是虚拟磁盘&#xff0c;当虚拟磁盘的空间变大时&#xff0c;仅仅删除WSL2文件系统中没有用到的大文件&#xff0c;磁盘空间是无法自动收缩回收的。本文介绍了一种回收WSL2虚拟磁盘空间的方法。 二、停止WSL2 在收缩 WSL2 虚拟磁盘之前&#xff0c;需…

Cent0S7 Docker安装 YOLOv8

githup 源码及其作者&#xff1a;ultralytics/ultralytics&#xff1a;新增 - PyTorch 中的 YOLOv8 &#x1f680; > ONNX > OpenVINO > CoreML > TFLite (github.com) yolo是什么&#xff1f; 实时视觉检测技术&#xff0c;通过对不同的角度拍摄的视觉图片进行人…

实现自动化:如何利用阿里云OSS上传文件并自动打标签

在当前数字化时代&#xff0c;数据管理变得愈发重要&#xff0c;特别是对于需要大规模存储和管理文件的场景。阿里云对象存储服务&#xff08;OSS&#xff09;作为业界领先的解决方案&#xff0c;不仅提供了稳定可靠的云存储&#xff0c;还支持丰富的扩展功能&#xff0c;如文件…

DNF手游鬼剑士攻略:全面解析流光星陨刀的获取与升级!云手机强力辅助!

《地下城与勇士》&#xff08;DNF&#xff09;手游是一款广受欢迎的多人在线角色扮演游戏&#xff0c;其中鬼剑士作为一个经典职业&#xff0c;因其强大的输出能力和炫酷的技能特效&#xff0c;吸引了众多玩家的青睐。在这篇攻略中&#xff0c;我们将详细介绍鬼剑士的一把重要武…

【Flink metric(1)】Flink指标系统的系统性知识:获取metric以及注册自己的metric

文章目录 一. Registering metrics&#xff1a;向flink注册新自己的metrics1. 注册metrics2. Metric types:指标类型2.1. Counter2.2. Gauge2.3. Histogram(ing)2.4. Meter 二. Scope:指标作用域1. User Scope2. System Scope ing3. User Variables 三. Reporter ing四. System…

基于AT89C52单片机的超声波测距设计—数码管显示

点击链接获取Keil源码与Project Backups仿真图: https://download.csdn.net/download/qq_64505944/89456475?spm=1001.2014.3001.5503 C 源码+仿真图+毕业设计+实物制作步骤+10 在这里插入图片描述 题 目: 基于52的超声波测距汽车防撞系统 学生姓名 [姓名] 学 号 [学号…

接口自动化测试关联token的方法?

引言&#xff1a; 在接口自动化测试中&#xff0c;有时候我们需要关联token来进行身份验证或权限管理。本文将从零开始&#xff0c;介绍如何详细且规范地实现接口自动化测试中token的关联。 步骤一&#xff1a;准备工作 在开始之前&#xff0c;我们需要确保以下准备工作已完成…

【股指期权投教】一手股指期权大概多少钱?

一手股指期权的权利金大概在几千人民币左右&#xff0c;如果是作为期权卖方还需要另外缴纳保证金的。国内的股指期权有三种&#xff0c;沪深300、上证50、中证1000股指期权&#xff0c;每点合约人民币100 元。 期权合约的价值计算可以通过此公式得出&#xff1a;权利金的支付或…