计算神经网络中梯度的核心机制 - 反向传播(backpropagation)算法(1)

计算神经网络中梯度的核心机制 - 反向传播(backpropagation)算法(1)

flyfish

链式法则在深度学习中的主要应用是在反向传播(backpropagation)算法中。
从简单的开始 ,文本说的就是链式法则

R \mathbb{R} R

  • 英文:The set of real numbers
  • 解释:符号 R \mathbb{R} R 表示所有实数的集合,包括所有正数、负数和零。在英语中,这个符号称为 “the set of real numbers” 或简称 “the reals”。
  • 读作:实数集
  • 含义:符号 R \mathbb{R} R 表示所有实数的集合。在数学中,这个符号用来指代从负无穷到正无穷的所有实数。

f ∘ g f \circ g fg

  • 读作 f f f 复合 g g g
  • 含义:符号 ∘ \circ 表示函数的复合。复合函数 f ∘ g f \circ g fg 表示先应用函数 g g g,然后将 g g g 的输出作为函数 f f f 的输入。形式上,这可以写作:
    ( f ∘ g ) ( x ) = f ( g ( x ) ) (f \circ g)(x) = f(g(x)) (fg)(x)=f(g(x))

例子

假设我们有两个函数 g ( x ) = 2 x + 3 g(x) = 2x + 3 g(x)=2x+3 f ( u ) = u 3 f(u) = u^3 f(u)=u3,复合函数 f ∘ g f \circ g fg 表示为:
( f ∘ g ) ( x ) = f ( g ( x ) ) = f ( 2 x + 3 ) = ( 2 x + 3 ) 3 (f \circ g)(x) = f(g(x)) = f(2x + 3) = (2x + 3)^3 (fg)(x)=f(g(x))=f(2x+3)=(2x+3)3

箭头符号的意义

  • f : A → B f: A \to B f:AB 表示函数 f f f 将集合 A A A 中的每个元素映射到集合 B B B 中的一个元素。
  • x ↦ f ( x ) x \mapsto f(x) xf(x) 表示 x x x 经过函数 f f f 的映射得到 f ( x ) f(x) f(x)

例子

  1. 简单映射
    f : R → R f: \mathbb{R} \to \mathbb{R} f:RR 表示一个从实数集合到实数集合的函数。具体的映射可以是:
    f ( x ) = x 2 f(x) = x^2 f(x)=x2
    这里, f f f 将每个实数 x x x 映射到它的平方 x 2 x^2 x2
  2. 复合函数的映射
    如果有两个函数 g g g f f f
  • g : R → R g: \mathbb{R} \to \mathbb{R} g:RR
  • f : R → R f: \mathbb{R} \to \mathbb{R} f:RR并且 g ( x ) = 2 x + 3 g(x) = 2x + 3 g(x)=2x+3 f ( u ) = u 3 f(u) = u^3 f(u)=u3,那么复合函数 f ∘ g f \circ g fg 可以表示为:
    ( f ∘ g ) ( x ) = f ( g ( x ) ) (f \circ g)(x) = f(g(x)) (fg)(x)=f(g(x))
    具体的映射是:
    g : x ↦ 2 x + 3 g: x \mapsto 2x + 3 g:x2x+3
    f : u ↦ u 3 f: u \mapsto u^3 f:uu3
    结合起来:
    ( f ∘ g ) : x ↦ ( 2 x + 3 ) 3 (f \circ g): x \mapsto (2x + 3)^3 (fg):x(2x+3)3

函数的映射关系

在数学中,函数的定义和使用广泛应用于各种映射关系中。箭头符号帮助我们清晰地描述这些关系。更具体地:

  • 箭头 → \to 用于描述集合之间的映射关系。
  • 箭头 ↦ \mapsto 用于描述具体的元素如何被映射。

复合函数的表示

复合函数的映射关系可以通过箭头符号更直观地表示:

  1. g : A → B g: A \to B g:AB
  2. f : B → C f: B \to C f:BC
  3. 复合函数 f ∘ g f \circ g fg 的映射关系为 f ∘ g : A → C f \circ g: A \to C fg:AC
    假设 g g g x x x 映射到 u u u,即 g : x ↦ u g: x \mapsto u g:xu,并且 f f f u u u 映射到 y y y,即 f : u ↦ y f: u \mapsto y f:uy。那么复合函数 f ∘ g f \circ g fg x x x 直接映射到 y y y,即:
    ( f ∘ g ) : x ↦ f ( g ( x ) ) (f \circ g): x \mapsto f(g(x)) (fg):xf(g(x))

复合函数的概念

如果我们有两个函数:

  • g : A → B g: A \to B g:AB
  • f : B → C f: B \to C f:BC
    其中,函数 g g g 将集合 A A A 中的元素映射到集合 B B B,而函数 f f f 将集合 B B B 中的元素映射到集合 C C C。那么,复合函数 f ∘ g f \circ g fg 将集合 A A A 中的元素直接映射到集合 C C C,即:
    ( f ∘ g ) ( x ) = f ( g ( x ) ) (f \circ g)(x) = f(g(x)) (fg)(x)=f(g(x))

例子

  1. 简单的复合函数
    g ( x ) = x 2 g(x) = x^2 g(x)=x2 f ( u ) = sin ⁡ ( u ) f(u) = \sin(u) f(u)=sin(u)。复合函数 ( f ∘ g ) ( x ) (f \circ g)(x) (fg)(x) 表示为:
    ( f ∘ g ) ( x ) = f ( g ( x ) ) = sin ⁡ ( x 2 ) (f \circ g)(x) = f(g(x)) = \sin(x^2) (fg)(x)=f(g(x))=sin(x2)
    在这个例子中,先计算内部函数 g ( x ) = x 2 g(x) = x^2 g(x)=x2,然后将结果代入到外部函数 f ( u ) = sin ⁡ ( u ) f(u) = \sin(u) f(u)=sin(u)
  2. 其他例子
    g ( x ) = 2 x + 3 g(x) = 2x + 3 g(x)=2x+3 f ( u ) = u 3 f(u) = u^3 f(u)=u3。复合函数 ( f ∘ g ) ( x ) (f \circ g)(x) (fg)(x) 表示为:
    ( f ∘ g ) ( x ) = f ( g ( x ) ) = ( 2 x + 3 ) 3 (f \circ g)(x) = f(g(x)) = (2x + 3)^3 (fg)(x)=f(g(x))=(2x+3)3

假设我们有两个函数 g ( x ) g(x) g(x) f ( u ) f(u) f(u)

  1. 先绘制 g ( x ) g(x) g(x) 的图形。例如, g ( x ) = x 2 g(x) = x^2 g(x)=x2 是一个抛物线。
  2. 然后将 g ( x ) g(x) g(x) 的输出代入 f ( u ) f(u) f(u),绘制 f ( g ( x ) ) f(g(x)) f(g(x)) 的图形。例如, f ( u ) = sin ⁡ ( u ) f(u) = \sin(u) f(u)=sin(u),将 u = x 2 u = x^2 u=x2 代入,得到 sin ⁡ ( x 2 ) \sin(x^2) sin(x2) 的图形。
    在这里插入图片描述
import numpy as np
import matplotlib.pyplot as plt# 定义两个函数
def g(x):return x**2def f(u):return np.sin(u)# 生成x的值
x = np.linspace(-2, 2, 400)
y_g = g(x)
y_f = f(y_g)# 初始化图形
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(8, 12))# 绘制函数 g(x)
ax1.plot(x, y_g, label=r'$g(x) = x^2$', color='blue')
ax1.set_title('Function $g(x)$')
ax1.set_xlabel('$x$')
ax1.set_ylabel('$g(x)$')
ax1.legend()# 绘制函数 f(u)
u = np.linspace(0, 4, 400)
ax2.plot(u, f(u), label=r'$f(u) = \sin(u)$', color='green')
ax2.set_title('Function $f(u)$')
ax2.set_xlabel('$u$')
ax2.set_ylabel('$f(u)$')
ax2.legend()# 绘制复合函数 h(x) = f(g(x))
ax3.plot(x, y_f, label=r'$h(x) = \sin(x^2)$', color='red')
ax3.set_title('Composite Function $h(x) = f(g(x))$')
ax3.set_xlabel('$x$')
ax3.set_ylabel('$h(x)$')
ax3.legend()# 调整子图之间的间距
plt.subplots_adjust(hspace=0.5)# 显示图形
plt.show()

链式法则(Chain Rule)是微积分中一个重要的求导法则,它用于求复合函数的导数。复合函数是指一个函数的输入是另一个函数的输出,形式上可以写作 y = f ( g ( x ) ) y = f(g(x)) y=f(g(x))。链式法则告诉我们如何求这种复合函数的导数。

如果我们有两个函数 f f f g g g,其中 y = f ( u ) y = f(u) y=f(u) u = g ( x ) u = g(x) u=g(x),那么根据链式法则,复合函数 y = f ( g ( x ) ) y = f(g(x)) y=f(g(x)) x x x 的导数可以表示为:
d y d x = d y d u ⋅ d u d x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} dxdy=dudydxdu

用更直观的方式理解,链式法则表明:

  1. 首先求出内部函数 u = g ( x ) u = g(x) u=g(x) x x x 的导数,即 d u d x \frac{du}{dx} dxdu
  2. 然后求出外部函数 y = f ( u ) y = f(u) y=f(u) u u u 的导数,即 d y d u \frac{dy}{du} dudy
  3. 最后将这两个导数相乘,得到复合函数 y = f ( g ( x ) ) y = f(g(x)) y=f(g(x)) x x x 的导数。

例子

假设有函数 y = sin ⁡ ( x 2 ) y = \sin(x^2) y=sin(x2),我们希望求 y y y x x x 的导数。

  1. 首先,我们将 y = sin ⁡ ( x 2 ) y = \sin(x^2) y=sin(x2) 看作两个函数的复合,即 y = sin ⁡ ( u ) y = \sin(u) y=sin(u) u = x 2 u = x^2 u=x2
  2. 对内部函数 u = x 2 u = x^2 u=x2 求导: d u d x = 2 x \frac{du}{dx} = 2x dxdu=2x
  3. 对外部函数 y = sin ⁡ ( u ) y = \sin(u) y=sin(u) 求导: d y d u = cos ⁡ ( u ) \frac{dy}{du} = \cos(u) dudy=cos(u)
  4. 将这两个结果相乘: d y d x = d y d u ⋅ d u d x = cos ⁡ ( x 2 ) ⋅ 2 x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos(x^2) \cdot 2x dxdy=dudydxdu=cos(x2)2x
    所以, y = sin ⁡ ( x 2 ) y = \sin(x^2) y=sin(x2) x x x 的导数为:
    d y d x = 2 x cos ⁡ ( x 2 ) \frac{dy}{dx} = 2x \cos(x^2) dxdy=2xcos(x2)

微分符号 d d d 的含义

  1. 导数的定义
    导数表示函数在某一点的变化率。对于函数 y = f ( x ) y = f(x) y=f(x),它在 x x x 处的导数定义为: d y d x = lim ⁡ Δ x → 0 Δ y Δ x \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} dxdy=limΔx0ΔxΔy这里, Δ y \Delta y Δy Δ x \Delta x Δx 分别表示 y y y x x x 的增量。当这些增量趋近于零时,我们用 d y dy dy d x dx dx 来表示这些非常小的变化量。
  2. 微分表示法
    微分符号 d d d 用于表示一个函数的微小变化。例如, d x dx dx 表示变量 x x x 的一个非常小的变化量。同样地, d y dy dy 表示函数 y y y 的一个非常小的变化量。如果 y = f ( x ) y = f(x) y=f(x),那么 d y dy dy 表示 y y y x x x 的微小变化,可以表示为: d y = f ′ ( x ) ⋅ d x dy = f'(x) \cdot dx dy=f(x)dx这里, f ′ ( x ) f'(x) f(x) 是函数 f ( x ) f(x) f(x) 的导数,表示 x x x 处的变化率。

链式法则中的 d d d

在链式法则中, d d d 表示不同变量的微小变化。例如:

  • d u du du 表示变量 u u u 的微小变化量。

  • d x dx dx 表示变量 x x x 的微小变化量。

  • d y dy dy 表示函数 y y y 的微小变化量。
    链式法则告诉我们,当我们有复合函数 y = f ( g ( x ) ) y = f(g(x)) y=f(g(x)) 时, y y y x x x 的变化可以分解为 y y y u u u 的变化以及 u u u x x x 的变化:
    d y d x = d y d u ⋅ d u d x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} dxdy=dudydxdu
    这里,每个 d d d 都表示相应变量的微小变化。例如:

  • d y d x \frac{dy}{dx} dxdy 表示 y y y x x x 的变化率。

  • d y d u \frac{dy}{du} dudy 表示 y y y u u u 的变化率。

  • d u d x \frac{du}{dx} dxdu 表示 u u u x x x 的变化率。
    通过这样分解,我们可以更容易地计算复合函数的导数。

基于极限和增量来理解链式法则

  1. 定义复合函数和导数
  • y = f ( u ) y = f(u) y=f(u),其中 u = g ( x ) u = g(x) u=g(x)
  • 我们需要求 y = f ( g ( x ) ) y = f(g(x)) y=f(g(x)) x x x 的导数。
  1. 增量表示
  • Δ x \Delta x Δx x x x 的一个非常小的增量。
  • 相应的, u u u 有一个非常小的增量 Δ u \Delta u Δu,其中 Δ u = g ( x + Δ x ) − g ( x ) \Delta u = g(x + \Delta x) - g(x) Δu=g(x+Δx)g(x)
  • y y y 的增量表示为 Δ y = f ( g ( x + Δ x ) ) − f ( g ( x ) ) \Delta y = f(g(x + \Delta x)) - f(g(x)) Δy=f(g(x+Δx))f(g(x))
  1. 导数的定义 d y d x = lim ⁡ Δ x → 0 Δ y Δ x \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} dxdy=limΔx0ΔxΔy
  2. 应用链式法则的思想 Δ y = f ( g ( x + Δ x ) ) − f ( g ( x ) ) \Delta y = f(g(x + \Delta x)) - f(g(x)) Δy=f(g(x+Δx))f(g(x))可以表示为: Δ y Δ x = f ( g ( x + Δ x ) ) − f ( g ( x ) ) Δ x \frac{\Delta y}{\Delta x} = \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x} ΔxΔy=Δxf(g(x+Δx))f(g(x))
  3. 拆分增量
    由于 u = g ( x ) u = g(x) u=g(x),我们可以引入 Δ u \Delta u Δu Δ y Δ x = f ( g ( x + Δ x ) ) − f ( g ( x ) ) g ( x + Δ x ) − g ( x ) ⋅ g ( x + Δ x ) − g ( x ) Δ x \frac{\Delta y}{\Delta x} = \frac{f(g(x + \Delta x)) - f(g(x))}{g(x + \Delta x) - g(x)} \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x} ΔxΔy=g(x+Δx)g(x)f(g(x+Δx))f(g(x))Δxg(x+Δx)g(x)
  4. 极限过程
    Δ x → 0 \Delta x \to 0 Δx0,我们有 Δ u → 0 \Delta u \to 0 Δu0,因此: d y d x = lim ⁡ Δ x → 0 ( f ( g ( x + Δ x ) ) − f ( g ( x ) ) g ( x + Δ x ) − g ( x ) ⋅ g ( x + Δ x ) − g ( x ) Δ x ) \frac{dy}{dx} = \lim_{\Delta x \to 0} \left( \frac{f(g(x + \Delta x)) - f(g(x))}{g(x + \Delta x) - g(x)} \cdot \frac{g(x + \Delta x) - g(x)}{\Delta x} \right) dxdy=Δx0lim(g(x+Δx)g(x)f(g(x+Δx))f(g(x))Δxg(x+Δx)g(x))根据导数的定义,我们有: d y d x = ( lim ⁡ Δ u → 0 Δ y Δ u ) ⋅ ( lim ⁡ Δ x → 0 Δ u Δ x ) \frac{dy}{dx} = \left( \lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} \right) \cdot \left( \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} \right) dxdy=(Δu0limΔuΔy)(Δx0limΔxΔu)
  5. 导数表示 d y d x = d y d u ⋅ d u d x \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} dxdy=dudydxdu其中, d y d u = lim ⁡ Δ u → 0 Δ y Δ u \frac{dy}{du} = \lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} dudy=Δu0limΔuΔy d u d x = lim ⁡ Δ x → 0 Δ u Δ x \frac{du}{dx} = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} dxdu=Δx0limΔxΔu
    因此复合函数的导数可以表示为外层函数的导数乘以内层函数的导数。

可视化

  • g(x):定义了内层函数 sin ⁡ ( x ) \sin(x) sin(x)
  • f(u):定义了外层函数 exp ⁡ ( u ) \exp(u) exp(u)
  • g_prime(x) 和 f_prime(u):定义了对应的导数。
  • h(x):复合函数 e sin ⁡ ( x ) e^{\sin(x)} esin(x)
  • h_prime(x):复合函数的导数,使用链式法则 f ′ ( g ( x ) ) ⋅ g ′ ( x ) f'(g(x)) \cdot g'(x) f(g(x))g(x)

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation# 定义两个函数及其导数
def g(x):return np.sin(x)def f(u):return np.exp(u)def g_prime(x):return np.cos(x)def f_prime(u):return np.exp(u)# 复合函数及其导数
def h(x):return f(g(x))def h_prime(x):return f_prime(g(x)) * g_prime(x)# 生成x的值
x = np.linspace(0, 2 * np.pi, 400)
y_g = g(x)
y_f = f(y_g)
y_h = h(x)# 初始化图形
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(8, 12))# 绘制函数 g(x)
ax1.plot(x, y_g, label=r'$g(x) = \sin(x)$', color='blue')
ax1.set_title('Function $g(x)$')
ax1.set_xlabel('$x$')
ax1.set_ylabel('$g(x)$')
ax1.legend()# 绘制函数 f(u)
u = np.linspace(-1, 1, 400)
ax2.plot(u, f(u), label=r'$f(u) = e^{u}$', color='green')
ax2.set_title('Function $f(u)$')
ax2.set_xlabel('$u$')
ax2.set_ylabel('$f(u)$')
ax2.legend()# 绘制复合函数 h(x) = f(g(x))
ax3.plot(x, y_h, label=r'$h(x) = e^{\sin(x)}$', color='red')
ax3.set_title('Composite Function $h(x) = f(g(x))$')
ax3.set_xlabel('$x$')
ax3.set_ylabel('$h(x)$')
ax3.legend()plt.subplots_adjust(hspace=0.5)# 初始化点和切线
point1, = ax1.plot([], [], 'ro')  # 点
tangent_line1, = ax1.plot([], [], 'r--')  # 切线point2, = ax2.plot([], [], 'ro')  # 点
tangent_line2, = ax2.plot([], [], 'r--')  # 切线point3, = ax3.plot([], [], 'ro')  # 点
tangent_line3, = ax3.plot([], [], 'r--')  # 切线def init():point1.set_data([], [])tangent_line1.set_data([], [])point2.set_data([], [])tangent_line2.set_data([], [])point3.set_data([], [])tangent_line3.set_data([], [])return point1, tangent_line1, point2, tangent_line2, point3, tangent_line3def animate(i):x0 = i * 2 * np.pi / 100  # 从 0 开始,步长为 2π / 100y0_g = g(x0)y0_h = h(x0)# 绘制 g(x) 的点和切线slope_g = g_prime(x0)point1.set_data([x0], [y0_g])tangent_x1 = np.array([x0 - 0.5, x0 + 0.5])tangent_y1 = y0_g + slope_g * (tangent_x1 - x0)tangent_line1.set_data(tangent_x1, tangent_y1)# 绘制 f(g(x)) 的点和切线u0 = y0_gy0_f = f(u0)slope_f = f_prime(u0)point2.set_data([u0], [y0_f])tangent_x2 = np.array([u0 - 0.5, u0 + 0.5])tangent_y2 = y0_f + slope_f * (tangent_x2 - u0)tangent_line2.set_data(tangent_x2, tangent_y2)# 绘制 h(x) = f(g(x)) 的点和切线slope_h = h_prime(x0)point3.set_data([x0], [y0_h])tangent_x3 = np.array([x0 - 0.5, x0 + 0.5])tangent_y3 = y0_h + slope_h * (tangent_x3 - x0)tangent_line3.set_data(tangent_x3, tangent_y3)return point1, tangent_line1, point2, tangent_line2, point3, tangent_line3ani = animation.FuncAnimation(fig, animate, frames=100, init_func=init, blit=True)# 保存为gif
ani.save('chain_rule_animation.gif', writer='imagemagick')# 显示动画
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/364558.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安卓应用开发学习:获取经纬度及地理位置描述信息

前段时间,我在学习鸿蒙应用开发的过程中,在鸿蒙系统的手机上实现了获取经纬度及地理位置描述信息(鸿蒙应用开发学习:手机位置信息进阶,从经纬度数据获取地理位置描述信息)。反而学习时间更长的安卓应用开发…

计算机视觉全系列实战教程 (十四):图像金字塔(高斯金字塔、拉普拉斯金字塔)

1.图像金字塔 (1)下采样 从G0 -> G1、G2、G3 step01:对图像Gi进行高斯核卷积操作(高斯滤波)step02:删除所有的偶数行和列 void cv::pyrDown(cv::Mat &imSrc, //输入图像cv::Mat &imDst, //下采样后的输出图像cv::Si…

第一节:如何开发第一个spring boot3.x项目(自学Spring boot 3.x的第一天)

大家好,我是网创有方,从今天开始,我会记录每篇我自学spring boot3.x的经验。只要我不偷懒,学完应该很快,哈哈,更新速度尽可能快,想和大佬们一块讨论,如果需要讨论的欢迎一起评论区留…

零基础开始学习鸿蒙开发-页面导航栏布局设计

1.设定初始页(Idex.ets) import {find} from ../pages/find import {home} from ../pages/home import {setting} from ../pages/setting Entry Component struct Index {private controller: TabsController new TabsController()State gridMargin: number 10State gridGut…

[图解]建模相关的基础知识-19

1 00:00:00,640 --> 00:00:04,900 前面讲了关系的这些范式 2 00:00:06,370 --> 00:00:11,570 对于我们建模思路来说,有什么样的作用 3 00:00:12,660 --> 00:00:15,230 我们建模的话,可以有两个思路 4 00:00:16,790 --> 00:00:20,600 一个…

项目实训-接口测试(十八)

项目实训-后端接口测试(十八) 文章目录 项目实训-后端接口测试(十八)1.概述2.测试对象3.测试一4.测试二 1.概述 本篇博客将记录我在后端接口测试中的工作。 2.测试对象 3.测试一 这段代码是一个单元测试方法,用于验证…

二叉树从根节点出发的所有路径

二叉树从根节点出发的所有路径 看上图中 二叉树结构 从根节点出发的所有路径 如下 6->4->2->1 6->4->2->3 6->4->5 6->8->7 6->8->9 逻辑思路: 按照先序遍历 加 回溯法 实现 代码如下 // 调用此方法,将根节点传递…

【Lua】第二篇:打印函数和注释

文章目录 一. 打印函数二. 注释方式1. 单行注释2. 多行注释 一. 打印函数 Lua 程序是以 .lua 结尾的文件,创建一个的 Test.lua 的文件,使用 print 函数输出字符串"Hello World": print(Hello World) 保存之后使用命令lua 文件名编…

安卓开发自定义时间日期显示组件

安卓开发自定义时间日期显示组件 问题背景 实现时间和日期显示,左对齐和对齐两种效果,如下图所示: 问题分析 自定义view实现一般思路: (1)自定义一个View (2)编写values/attrs.…

如何用Go语言,实现基于宏系统的解释器?

目录 一、Go语言介绍二、什么是宏系统三、什么是解释器四、如何用Go语言实现一个基于宏系统的解释器? 一、Go语言介绍 Go语言,又称为Golang,是一种由谷歌公司开发并开源的编程语言。Go语言的设计目标是提高程序员的生产力,同时具…

Oracle、MySQL、PostGreSQL、SQL Server-空值

Oracle、MySQL、PostGreSQL、SQL Server-null value 最近几年数据库市场百花齐放,在做跨数据库迁移的数据库选型时,除了性能、稳定、安全、运维、功能、可扩展外,像开发中对于值的处理往往容易被人忽视, 之前写过一篇关于PG区别O…

2024年6月26日 (周三) 叶子游戏新闻

老板键工具来唤去: 它可以为常用程序自定义快捷键,实现一键唤起、一键隐藏的 Windows 工具,并且支持窗口动态绑定快捷键(无需设置自动实现)。 土豆录屏: 免费、无录制时长限制、无水印的录屏软件 《Granblue Fantasy Versus: Risi…

Cisco Identity Services Engine (ISE) 3.3 Patch 2 - 基于身份的网络访问控制和策略实施系统

Cisco Identity Services Engine (ISE) 3.3 Patch 2 - 基于身份的网络访问控制和策略实施系统 思科身份服务引擎 (ISE) - 下一代 NAC 解决方案 请访问原文链接:Cisco Identity Services Engine (ISE) 3.3 Patch 2 - 基于身份的网络访问控制和策略实施系统&#xf…

笔灵AI写作:释放创意,提升写作效率的秘诀

内容为王,在内容创作的世界中尤为重要。然而,面对写作时常常感到无从下手:有时缺乏灵感,有时难以表达清楚自己的想法。AI写作助手的出现,为这些问题提供了创新的解决方案,极大地改变了内容创作的过程。 今…

STM32——使用TIM输出比较产生PWM波形控制舵机转角

一、输出比较简介: 只有高级定时器和通用寄存器才有输入捕获/输出比较电路,他们有四个CCR(捕获/比较寄存器),共用一个CNT(计数器),而输出比较功能是用来输出PWM波形的。 红圈部分…

C语言调用python

1、linux中安装libpython3.10-dev 通过C语言调用python代码,需要先安装libpython3的dev依赖库(不同的ubuntu版本下,python版本可能会有差异, 比如ubuntu 22.04里是libpython3.10-dev)。 首先可以通过以下命令验证…

数字信号处理实验一(离散信号及离散系统的MATLAB编程实现)

实验要求: 离散信号及离散系统的MATLAB编程实现(2学时) 要求: 编写一程序,输出一定长度(点数),具有一定幅度、(角)频率和初始相位的实(或复&…

gitee配置ssh教程

生成公钥 执行命令: ssh-keygen -t rsa查看公钥 cat ~/.ssh/id_rsa.pub这个公钥就是要复制粘贴到Gitee中的ssh公钥。 配置Gitee SSH公钥 来到Gitee的ssh公钥中,配置

ONLYOFFICE8.1版本桌面编辑器简单测评

ONLYOFFICE官网链接:在线PDF查看器和转换器 | ONLYOFFICE ONLYOFFICE介绍:https://www.onlyoffice.com/zh/office-suite.aspx OnlyOffice 是一款免费且开源的 Office 协作办公套件,支持桌面端和移动端等多平台,由一家领先的 IT 公…

热管的原理和棒芯的加工

当热管的一端受热时,毛细芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端,放出热量凝结成液体,液体再靠毛细力(或重力)的作用,沿多孔材料流回蒸发段。如此循环不已,热量便从一端传…