【Matlab 六自由度机器人】机器人动力学之推导拉格朗日方程(附MATLAB机器人动力学拉格朗日方程推导代码)

【Matlab 六自由度机器人】机器人动力学概述

  • 近期更新
  • 前言
  • 正文
    • 一、拉格朗日方程的推导
      • 1. 单自由度系统
      • 2. 单连杆机械臂系统
      • 3. 双连杆机械臂系统
    • 二、MATLAB实例推导
      • 1. 机器人模型的建立
      • 2. 动力学代码
  • 总结
  • 参考文献

近期更新

【汇总】

【Matlab 六自由度机器人】系列文章汇总  \fcolorbox{green}{aqua}{【Matlab 六自由度机器人】系列文章汇总 } Matlab 六自由度机器人】系列文章汇总 

【主线】

运动学 \color{red}运动学 运动学

  1. 定义标准型及改进型D-H参数,建立机器人模型。
  2. 运动学正解
  3. 基于蒙特卡罗方法(Monte Carlo Method)构建机器人工作空间

动力学 \color{red}动力学 动力学
(待补充)

【补充说明】

  1. 关于灵活工作空间与可达工作空间的理解
  2. 关于改进型D-H参数(modified Denavit-Hartenberg)的详细建立步骤
  3. 关于旋转的参数化(欧拉角、姿态角、四元数)的相关问题
  4. 关于双变量函数atan2(x,y)的解释
  5. 关于机器人运动学反解的有关问题

前言

本篇对机器人动力学进行一个概述。
之前谈到的运动学方程仅描述了机器人的运动过程,没有考虑到产生运动的力和扭矩,而动力学方程能描述力和运动之间的关系,因此我们在此引入动力学的概念。

本人在读研期间仅在机器人运动学的基础上完成论文的撰写,有些遗憾未能将机器人动力学应用到文章之中,在此写下机器人动力学的概述以及学习过程中遇到的问题和解决思路。


以下是本篇文章正文内容

分析机器人操作的动态数学模型,主要采用下列两种理论

  1. 动力学基本理论,包括牛顿欧拉方程。
  2. 拉格朗日力学,特别是二阶拉格朗日方程。

第一个方法:牛顿—欧拉方程即力的动态平衡法。当用此法时,需从运动学出发求得加速度,并消去各内作用力。对于较复杂的系统,此种分析方法十分复杂与麻烦。
第二个方法:拉格朗日方程即拉格朗日功能平衡法,也称为欧拉—拉格朗日方程,它只需要速度而不必求内作用力。因此,这是一种直截了当和简便的方法。

在本篇文章中主要采用拉格朗日方程来分析和求解机械手的动力学问题。

正文

一、拉格朗日方程的推导

1. 单自由度系统

我们以图中所示的单自由度系统为例,来说明如何从牛顿第二定律推导出拉格朗日方程。图中的圆点为带有质量的一个粒子,下面称为质点。该质点受到重力 g g g的效果和拉力 f f f的效果。
Alt

质量为 m m m的粒子受到限制,只能在垂直方向移动,这就构成了一个单自由度系统。 重力 m g mg mg向下作用, 外力 f f f则向上作用。

根据牛顿第二定律,这个系统中的质点的运动方程为:
m a = f − m g ⟹ m y ¨ = f − m g ma=f-mg\implies m\ddot{y}_{}^{}=f-mg ma=fmgmy¨=fmg
左侧的 m y ¨ m\ddot{y}_{}^{} my¨也可以用以下方程推出
m y ¨ = d d t ( m y ˙ ) = d d t ∂ ∂ y ˙ ( 1 2 m y ˙ 2 ) = d d t ( ∂ K ∂ y ˙ ) m\ddot{y}_{}^{}= \frac{\mathrm{d}}{\mathrm{d} t} \left(m\dot{y}\right) = \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial {}}{\partial \dot{y}} \left(\frac{1}{2}m\dot{y}^2\right)= \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{\partial \mathcal{K}}{\partial \dot{y}}\right) my¨=dtd(my˙)=dtdy˙(21my˙2)=dtd(y˙K)
注: m y ˙ 可以写作 ∂ ∂ y ˙ ( 1 2 m y ˙ 2 ) m\dot{y}可以写作\frac{\partial {}}{\partial \dot{y}} \left(\frac{1}{2}m\dot{y}^2\right) my˙可以写作y˙(21my˙2),即 1 2 m y ˙ 2 \frac{1}{2}m\dot{y}^2 21my˙2 y y y进行求偏导。

其中,动能 K = 1 2 m y ˙ 2 \mathcal{K}= \frac{1}{2} m\dot{y}^2 K=21my˙2

类似上面的方程,我们可以将重力表达为:
m g = ∂ ∂ y ( m g y ) = ∂ P ∂ y mg=\frac{\partial }{\partial {y}}\left(mgy\right)= \frac{\partial \mathcal{P}}{\partial {y}} mg=y(mgy)=yP
其中,重力势能 P = m g y \mathcal{P}= mgy P=mgy

定义函数 L \mathcal{L} L,它是系统的动能和势能之差,也称为系统的拉格朗日算子
L = K − P = 1 2 m y ˙ 2 − m g y \mathcal{L}= \mathcal{K}- \mathcal{P}=\frac{1}{2}m\dot{y}^2-mgy L=KP=21my˙2mgy
① L 对 y ˙ 求偏导,可得到 ∂ L ∂ y ˙ = ∂ K ∂ y ˙ ① \mathcal{L}对\dot{y}求偏导,可得到\frac{\partial { \mathcal{L}}}{\partial \dot{y}}=\frac{\partial { \mathcal{K}}}{\partial \dot{y}} Ly˙求偏导,可得到y˙L=y˙K

② L 对 y ˙ 求偏导,可得到 ∂ L ∂ y = − ∂ P ∂ y ⟹ ∂ P ∂ y = − ∂ L ∂ y ② \mathcal{L}对\dot{y}求偏导,可得到\frac{\partial { \mathcal{L}}}{\partial {y}}=-\frac{\partial { \mathcal{P}}}{\partial {y}} \implies \frac{\partial { \mathcal{P}}}{\partial {y}}=-\frac{\partial { \mathcal{L}}}{\partial {y}} Ly˙求偏导,可得到yL=yPyP=yL

那么对上式的 m y ¨ = f − m g m\ddot{y}_{}^{}=f-mg my¨=fmg可以写作如下公式
d d t ∂ L ∂ y ˙ = f − ( − ∂ L ∂ y ) ⟹ f = d d t ∂ L ∂ y ˙ − ∂ L ∂ y \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial { \mathcal{L}}}{\partial \dot{y}}=f- \left(-\frac{\partial \mathcal{L}}{\partial {y}}\right) \implies f=\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial { \mathcal{L}}}{\partial \dot{y}}-\frac{\partial \mathcal{L}}{\partial {y}} dtdy˙L=f(yL)f=dtdy˙LyL
至此,单自由度系统的拉格朗日方程就推导出来了,方程如下:
f = d d t ∂ L ∂ y ˙ − ∂ L ∂ y f=\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial { \mathcal{L}}}{\partial \dot{y}}-\frac{\partial \mathcal{L}}{\partial {y}} f=dtdy˙LyL

下面是建立拉格朗日函数的一般步骤
首先写出系统的动能和势能,并以广义坐标 ( q 1 , ⋯ , q n ) \left(q_{1}, \cdots, q_{n}\right) (q1,,qn) 的形式来表示,其中 n n n 是系统的自由度数目;然后,根据下述公式来计算 n − n^{-} n自由度系统的运动方程
d d t ∂ L ∂ q ˙ k − ∂ L ∂ q k = τ k , k = 1 , ⋯ , n \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{k}}-\frac{\partial \mathcal{L}}{\partial q_{k}}=\tau_{k}, \quad k=1, \cdots, n dtdq˙kLqkL=τk,k=1,,n
其中, τ k \tau_{k} τk 是与广义坐标 q k q_{k} qk 相关的广义力。
在上述单自由度系统的例子中,变量 y y y 作为广义坐标。欧拉-拉格朗日方程不仅可以导出一组耦合的二阶常微分方程,它还提供了一种 等同于通过牛顿第二定律得到动力学方程的构造方法。然而,正如我们将要看到的那样,对于诸如多连杆机器人等复杂系统,使用拉格朗日方法更为有利。

下面介绍单连杆机械臂系统双连杆机械臂系统的拉格朗日方程

2. 单连杆机械臂系统

如下图中所示的单连杆机器人,它包括一个刚性连杆,该连杆通过齿轮系连接到直流电机。令 θ l \theta_l θl θ m \theta_m θm分别表示连杆和电机轴的转动角度。那么 θ m = r θ l \theta_m=r\theta_l θm=rθl,其中 r : 1 r: 1 r:1为齿轮变速比。如果连杆一端直接接在电机的旋转轴上,那么 r = 1 r=1 r=1。连杆转角和电机轴转角之间的代数关系表明该系统只有一个自由度,因此我们可以将 θ l \theta_l θl θ m \theta_m θm作为广义坐标。
请添加图片描述

单连杆机器人:电机输出轴通过齿轮系耦连到连杆的转动轴,齿轮系放大了电机扭矩并降低了电机转速。

在此选用 θ ℓ \theta_\ell θ作为广义坐标
系统的动能可以表示为 θ ℓ \theta_\ell θ的函数,其表示如下所示
K = 1 2 J m θ ˙ m 2 + 1 2 J ℓ θ ˙ ℓ 2 = 1 2 J m r 2 θ ˙ ℓ 2 + 1 2 J ℓ θ ˙ ℓ 2 = 1 2 ( r 2 J m + J ℓ ) θ ˙ ℓ 2 \mathcal{K} =\frac{1}{2}J_{m} \dot{\theta}_{m}^{2}+\frac{1}{2} J_{\ell} \dot{\theta}_{\ell}^{2} =\frac{1}{2}J_{m}r^2 \dot{\theta}_{\ell}^{2}+\frac{1}{2} J_{\ell} \dot{\theta}_{\ell}^{2} =\frac{1}{2}\left(r^{2} J_{m}+J_{\ell}\right) \dot{\theta}_{\ell}^{2} K=21Jmθ˙m2+21Jθ˙2=21Jmr2θ˙2+21Jθ˙2=21(r2Jm+J)θ˙2
其中, J m , J ℓ J_m,J_\ell Jm,J分别为电机和连杆的转动惯量。系统的势能如下所示
P = M g ℓ ( 1 − cos ⁡ θ ℓ ) \mathcal{P}=Mg\ell\left(1-\cos \theta_{\ell}\right) P=Mg(1cosθ)
其中, M M M 是连杆的总体质量, ℓ \ell 是关节轴线与连杆质心之间的距离。定义 J = r 2 J m + J ℓ J=r^{2} J_{m}+J_{\ell} J=r2Jm+J,拉格朗日算子 L \mathcal{L} L如下
L = 1 2 J θ ˙ ℓ 2 − M g ℓ ( 1 − cos ⁡ θ ℓ ) \mathcal{L}=\frac{1}{2} J \dot{\theta}_{\ell}^{2}-M g \ell\left(1-\cos \theta_{\ell}\right) L=21Jθ˙2Mg(1cosθ)
将上述表达式代人到公式 d d t ∂ L ∂ q ˙ k − ∂ L ∂ q k = τ k , \frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{k}}-\frac{\partial \mathcal{L}}{\partial q_{k}}=\tau_{k}, dtdq˙kLqkL=τk,中,其中 n = 1 n=1 n=1,广义坐标为 θ ℓ \theta_{\ell} θ,得到下列运动方程
J θ ¨ ℓ + M g ℓ sin ⁡ θ ℓ = τ ℓ J \ddot{\theta}{ }_{\ell}+M g \ell \sin \theta_{\ell}=\tau_{\ell} Jθ¨+Mgsinθ=τ
广义力 τ ℓ \tau_{\ell} τ 表示那些无法从势函数推导出的外力和外力矩。对于这个例子, τ ℓ \tau_{\ell} τ 包括反映 到连杆上的电机输入力矩 u = r τ m u=r \tau_{m} u=rτm,以及 (非保守) 阻尼力矩 B m θ ˙ m B_{m} \dot{\theta}_{m} Bmθ˙m B ℓ θ ˙ 1 B_{\ell} \dot{\theta}_{1} Bθ˙1 。将电机阻尼反映到连杆上,得出
τ ℓ = u − B θ ˙ ℓ ⟹ u = τ ℓ + B θ ˙ ℓ \tau_{\ell}=u-B \dot{\theta}_{\ell} \implies u=\tau_{\ell}+B \dot{\theta}_{\ell} τ=uBθ˙u=τ+Bθ˙
其中, B = r B m + B ℓ B=r B_{m}+B_{\ell} B=rBm+B 。因此,该系统完整的动力学表达式为
u = J θ ¨ ℓ + B θ ˙ ℓ + M g ℓ sin ⁡ θ ℓ u=J \ddot{\theta}_{\ell}+B \dot{\theta}_{\ell}+M g \ell \sin \theta_{\ell} u=Jθ¨+Bθ˙+Mgsinθ

3. 双连杆机械臂系统

下面推导双连杆机械臂系统的动能和位能,如下图。这种运动机构具有开式运动链,与复摆运动有许多相似之处。

请添加图片描述

图中
T 1 T_{1} T1 T 2 T_{2} T2 为转矩;

m 1 m_{1} m1 m 2 m_{2} m2为连杆1和连杆2的质量,该连杆的质量以连杆末端的质点来进行表示;
d 1 d_{1} d1 d 2 d_{2} d2分别为两连杆的长度;
θ 1 \theta_{1} θ1 θ 2 \theta_{2} θ2为广义坐标;
g g g为重力加速度。

先计算连杆1的动能 K 1 {K_1} K1和动能 P 1 {P_1} P1

K 1 = 1 2 m 1 v 1 2 v 1 = d 1 θ ˙ 1 P 1 = m 1 g h h 1 = − d 1 cos ⁡ θ 1 \begin{aligned} {K_1}&=\frac{1}{2} m_{1} v_{1}^{2} \\ v_{1}&=d_{1} \dot{\theta}_{1} \\ {P_1}&=m_1gh \\ h_1&=-d_{1} \cos \theta_{1} \end{aligned} K1v1P1h1=21m1v12=d1θ˙1=m1gh=d1cosθ1
推导得
K 1 = 1 2 m 1 d 1 2 θ ˙ 1 2 P 1 = − m 1 g d 1 cos ⁡ θ 1 \begin{aligned} K_{1}&=\frac{1}{2} m_{1} d_{1}^{2} \dot{\theta}_{1}^{2} \\ P_{1}&=-m_{1} g d_{1} \cos \theta_{1} \end{aligned} K1P1=21m1d12θ˙12=m1gd1cosθ1
再求连杆 2 的动能 K 2 K_{2} K2 和位能 P 2 P_{2} P2
K 2 = 1 2 m 2 v 2 2 P 2 = m g y 2 \begin{aligned} K_{2}&=\frac{1}{2} m_{2} v_{2}^{2}\\ P_{2}&=m g y_{2} \end{aligned} K2P2=21m2v22=mgy2式中
v 2 2 = x ˙ 2 2 + y ˙ 2 2 x 2 = d 1 sin ⁡ θ 1 + d 2 sin ⁡ ( θ 1 + θ 2 ) y 2 = − d 1 cos ⁡ θ 1 − d 2 cos ⁡ ( θ 1 + θ 2 ) x ˙ 2 = d 1 cos ⁡ θ 1 θ ˙ 1 + d 2 cos ⁡ ( θ 1 + θ 2 ) ( θ ˙ 1 + θ ˙ 2 ) y ˙ 2 = d 1 sin ⁡ θ 1 θ ˙ 1 + d 2 sin ⁡ ( θ 1 + θ 2 ) ( θ ˙ 1 + θ ˙ 2 ) \begin{aligned} v_{2}^{2}&=\dot{x}_{2}^{2}+\dot{y}_{2}^{2} \\ x_{2}&=d_{1} \sin \theta_{1}+d_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\ y_{2}&=-d_{1} \cos \theta_{1}-d_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\ \dot{x}_{2}&=d_{1} \cos \theta_{1} \dot{\theta}_{1}+d_{2} \cos \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \\ \dot{y}_{2}&=d_{1} \sin \theta_{1} \dot{\theta}_{1}+d_{2} \sin \left(\theta_{1}+\theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \end{aligned} v22x2y2x˙2y˙2=x˙22+y˙22=d1sinθ1+d2sin(θ1+θ2)=d1cosθ1d2cos(θ1+θ2)=d1cosθ1θ˙1+d2cos(θ1+θ2)(θ˙1+θ˙2)=d1sinθ1θ˙1+d2sin(θ1+θ2)(θ˙1+θ˙2)
于是可求得
v 2 2 = d 1 2 θ ˙ 1 2 + d 2 2 ( θ ˙ 1 2 + 2 θ ˙ 1 θ ˙ 2 + θ ˙ 2 2 ) + 2 d 1 d 2 cos ⁡ θ 2 ( θ ˙ 1 2 + θ ˙ 1 θ ˙ 2 ) \boldsymbol{v}_{2}^{2}=d_{1}^{2} \dot{\theta}_{1}^{2}+d_{2}^{2}\left(\dot{\theta}_{1}^{2}+2 \dot{\theta}_{1} \dot{\theta}_{2}+\dot{\theta}_{2}^{2}\right)+2 d_{1} d_{2} \cos \theta_{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{1} \dot{\theta}_{2}\right) v22=d12θ˙12+d22(θ˙12+2θ˙1θ˙2+θ˙22)+2d1d2cosθ2(θ˙12+θ˙1θ˙2)
以及
K 2 = 1 2 m 2 d 1 2 θ ˙ 1 2 + 1 2 m 2 d 2 2 ( θ ˙ 1 + θ ˙ 2 ) 2 + m 2 d 1 d 2 cos ⁡ θ 2 ( θ ˙ 1 2 + θ ˙ 1 θ ˙ 2 ) P 2 = − m 2 g d 1 cos ⁡ θ 1 − m 2 g d 2 cos ⁡ ( θ 1 + θ 2 ) \begin{gathered} K_{2}&=\frac{1}{2} m_{2} d_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} d_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+m_{2} d_{1} d_{2} \cos \theta_{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{1} \dot{\theta}_{2}\right) \\ P_{2}&=-m_{2} g d_{1} \cos \theta_{1}-m_{2} g d_{2} \cos \left(\theta_{1}+\theta_{2}\right) \end{gathered} K2P2=21m2d12θ˙12+21m2d22(θ˙1+θ˙2)2+m2d1d2cosθ2(θ˙12+θ˙1θ˙2)=m2gd1cosθ1m2gd2cos(θ1+θ2)
这样, 二连杆机械手系统的总动能和总位能分别为
K = K 1 + K 2 = 1 2 ( m 1 + m 2 ) d 1 2 θ ˙ 1 2 + 1 2 m 2 d 2 2 ( θ ˙ 1 + θ ˙ 2 ) 2 + m 2 d 1 d 2 cos ⁡ θ 2 ( θ ˙ 1 2 + θ ˙ 1 θ ˙ 2 ) P = P 1 + P 2 = − ( m 1 + m 2 ) g d 1 cos ⁡ θ 1 − m 2 g d 2 cos ⁡ ( θ 1 + θ 2 ) \begin{aligned} K &=K_{1}+K_{2} \\ &=\frac{1}{2}\left(m_{1}+m_{2}\right) d_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} d_{2}^{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2}+m_{2} d_{1} d_{2} \cos \theta_{2}\left(\dot{\theta}_{1}^{2}+\dot{\theta}_{1} \dot{\theta}_{2}\right) \\ P &=P_{1}+P_{2} \\ &=-\left(m_{1}+m_{2}\right) g d_{1} \cos \theta_{1}-m_{2} g d_{2} \cos \left(\theta_{1}+\theta_{2}\right) \end{aligned} KP=K1+K2=21(m1+m2)d12θ˙12+21m2d22(θ˙1+θ˙2)2+m2d1d2cosθ2(θ˙12+θ˙1θ˙2)=P1+P2=(m1+m2)gd1cosθ1m2gd2cos(θ1+θ2)

二、MATLAB实例推导

1. 机器人模型的建立

  1. 根据文章上述的双连杆机械臂对其进行建模,具体建模方法可参阅以下文章:
  • 定义标准型及改进型D-H参数建立机器人模型(附MATLAB建模代码)
  • 【Matlab 六自由度机器人】关于改进型D-H参数(modified Denavit-Hartenberg)的详细建立步骤

单杆机械臂系统代码如下:

%% 单杆机械臂系统
clc
clear
close all
warning off%% MOD-DH参数
d1 = 0;
d2 = 100;
a1 = 0;
a2 = 0;
alpha1 = pi/2;
alpha2 = 0;
%       theta  d    a    alpha  offset(关节变量偏移量)
L(1)=Link([0   d1   a1   alpha1   0   ],'modified');
L(2)=Link([0   d2   a2   alpha2   0   ],'modified');
Single_Robot = SerialLink(L,'name','SingleRobot');
Single_Robot.teach()
%限制机器人的关节空间
theta1min = -180;        theta1max = 180;
theta2min = -180;        theta2max = 180;
L(1).qlim = [theta1min theta1max]*pi/180;
L(2).qlim = [theta2min theta2max]*pi/180;

双连杆机械臂系统代码如下:

%% 双连杆机械臂系统
clc
clear
close all
warning off%% MOD-DH参数
d1 = 0;
d2 = 0;
d3 = 0;
a1 = 0;
a2 = 100;
a3 = 100;
alpha1 = pi/2;
alpha2 = 0;
alpha3 = 0;
%       theta  d    a    alpha  offset(关节变量偏移量)
L(1)=Link([0   d1   a1   alpha1   0   ],'modified');
L(1).offset = -pi/2;
L(2)=Link([0   d2   a2   alpha2   0   ],'modified');
L(3)=Link([0   d3   a3   alpha3   0   ],'modified');
Double_Robot = SerialLink(L,'name','SingleRobot');
Double_Robot.display()
Double_Robot.teach()
%限制机器人的关节空间
theta1min = -180;        theta1max = 180;
theta2min = -180;        theta2max = 180;
theta3min = -180;        theta3max = 180;
L(1).qlim = [theta1min theta1max]*pi/180;
L(2).qlim = [theta2min theta2max]*pi/180;
L(3).qlim = [theta3min theta3max]*pi/180;

接下来对其进行运动学上的轨迹规划:

  1. 对于单杆系统,其轨迹规划如下:
n = 1:100;
q0 = [0 0];
q1 = [30 30];% 由q0移动到q1
[q,qd,qdd] = jtraj(q0,q1,n);figure(2)
subplot(3,1,1)
plot(n,q)
subplot(3,1,2)
plot(n,qd)
subplot(3,1,3)
plot(n,qdd)

其效果如下图:
请添加图片描述

  1. 对于双连杆系统
n = 1:100;
q0 = [0 0 0];
q1 = [30 60 90];[q,qd,qdd] = jtraj(q0,q1,n);figure(2)
subplot(3,1,1)
plot(n,q)
subplot(3,1,2)
plot(n,qd)
subplot(3,1,3)
plot(n,qdd)

其效果如下图:
请添加图片描述

往后会对关节空间轨迹规划 j t r a j ( ) 函数 jtraj()函数 jtraj()函数笛卡尔空间轨迹规划 c t r a j ( ) 函数 ctraj()函数 ctraj()函数 进行单独篇章的撰写和探讨。

至此,运动学的前期准备已经完毕,下面进行机器人动力学 拉格朗日方程的推导。

2. 动力学代码

使用robot.dyn()函数查看建立的机器人的动力学参数

代码如下:

% 查看robot机器人所有的连杆的动力学参数
robot.dyn;
% 查看robot机器人第n根连杆的动力学参数
robot.dyn(n);% 对Single_Robot进行动力学参数的设置

总结

本篇对机器人动力学进行一个概述。
之前谈到的运动学方程仅描述了机器人的运动过程,没有考虑到产生运动的力和扭矩,而动力学方程能描述力和运动之间的关系,因此我们在此引入动力学的概念。
第一章是机器人动力学之推导拉格朗日方程的内容,本文详细介绍了如何理解拉格朗日方程以及如何进行推导,介绍了如何求出机构的动能及位能。
第二章是拉格朗日方程代码的实现。

参考文献

  1. 机器人学、机器视觉与控制:MATLAB算法基础
  2. 机器人学
  3. 机器人建模和控制
  4. MATLAB机器人工具箱(四)动力学
  5. MATLAB机器人工具箱【3】—— 动力学相关函数及用法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/364911.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch 第四期:搜索和过滤

序 2024年4月,小组计算建设标签平台,使用ES等工具建了一个demo,由于领导变动关系,项目基本夭折。其实这两年也陆陆续续接触和使用过ES,两年前也看过ES的官网,当时刚毕业半年多,由于历史局限性导…

大数据开发如何管理项目

在面试的时候总是 会问起项目,那在大数据开发的实际工作中,如何做好一个项目呢? 目录 1. 需求分析与项目规划1.1 需求收集与梳理1.2 可行性分析1.3 项目章程与计划 2. 数据准备与处理2.1 数据源接入2.2 数据仓库建设2.3 数据质量管理 3. 系统…

ARCGIS添加在线地图

地图服务地址:http://map.geoq.cn/ArcGIS/rest/services 具体方法: 结果展示:

Python逻辑控制语句 之 循环语句--for循环

1.for 的介绍 for 循环 也称为是 for 遍历, 也可以做指定次数的循环遍历: 是从容器中将数据逐个取出的过程.容器: 字符串/列表/元组/字典 2.for 的语法 (1)for 循环遍历字符串 for 变量 in 字符串: 重复执⾏的代码 字符串中存在多少个字符, 代码就执行…

flink的窗口

目录 窗口分类 1.按照驱动类型分类 1. 时间窗口(Time window) 2.计数窗口(Count window) 2.按照窗口分配数据的规则分类 窗口API分类 API调用 窗口分配器器: 窗口函数 增量聚合函数: 全窗口函数…

网络编程常见问题

1、TCP状态迁移图 2、TCP三次握手过程 2.1、握手流程 1、TCP服务器进程先创建传输控制块TCB,时刻准备接受客户进程的连接请求,此时服务器就进入了LISTEN(监听)状态; 2、TCP客户进程也是先创建传输控制块TCB&#xff…

Echarts地图实现:杭州市困难人数分布【动画滚动播放】

Echarts地图实现:杭州市困难人数分布 实现功能 杭州市地区以及散点图分布结合的形式数据展示动画轮播可进去杭州市下级地区可返回杭州市地图展示 效果预览 实现思路 使用ECharts的地图和散点图功能结合实现地区分布通过动画轮播展示数据变化实现下级地区数据的展…

搜索引擎的原理与相关知识

搜索引擎是一种网络服务,它通过互联网帮助用户找到所需的信息。搜索引擎的工作原理主要包括以下几个步骤: 网络爬虫(Web Crawler):搜索引擎使用网络爬虫(也称为蜘蛛或机器人)来遍历互联网&#…

Hugging Face Accelerate 两个后端的故事:FSDP 与 DeepSpeed

社区中有两个流行的零冗余优化器 (Zero Redundancy Optimizer,ZeRO)算法实现,一个来自DeepSpeed,另一个来自PyTorch。Hugging FaceAccelerate对这两者都进行了集成并通过接口暴露出来,以供最终用户在训练/微调模型时自主选择其中之…

flask-socket的实践

1.长连接和短连接的由来 1)TCP在真正的读写操作之前,server与client之间必须建立一个连接, 当读写操作完成后,双方不再需要这个连接时它们可以释放这个连接, 连接的建立通过三次握手,释放则需要四次握手…

java基于ssm+jsp 二手车交易网站

1用户功能模块 定金支付管理,在定金支付管理页面可以填写订单编号、车型、品牌、分类、车身颜色、售价、订金金额、付款日期、备注、用户名、姓名、联系方式、是否支付等信息,进行详情、修改,如图1所示。 图1定金支付管理界面图 预约到店管…

“论大数据处理架构及其应用”写作框架,软考高级,系统架构设计师

论文真题 大数据处理架构是专门用于处理和分析巨量复杂数据集的软件架构。它通常包括数据收集、存储、处理、分析和可视化等多个层面,旨在从海量、多样化的数据中提取有价值的信息。Lambda架构是大数据平台里最成熟、最稳定的架构,它是一种将批处理和流…

kicad第三方插件安装问题

在使用KICAD时想安装扩展内容,但是遇到下载失败,因为SSL connect error。 因为是公司网络,我也不是很懂,只能另寻他法。找到如下方法可以曲线救国。 第三方插件包目录 打开存放第三方插件存放目录,用于存放下载插件包…

通俗范畴论4 范畴的定义

注:由于CSDN无法显示本文章源文件的公式,因此部分下标、字母花体、箭头表示可能会不正常,请读者谅解 范畴的正式定义 上一节我们在没有引入范畴这个数学概念的情况下,直接体验了一个“苹果1”范畴,建立了一个对范畴的直观。本节我们正式学习范畴的定义和基本性质。 一个…

【WPF】Windows系统桌面应用程序编程开发新手入门-打造自己的小工具

电脑Windows系统上的桌面程序通常是用Visual Studio 开发工具编写出来的,有两种开发方式供选择,一种是WindowForm,简称WinForm,另一种是Windows Presentation Foundation,简称WPF,这里将学习WPF项目。 文章…

收银系统源码-千呼新零售【全场景收银】

千呼新零售2.0系统是零售行业连锁店一体化收银系统,包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体,线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 详细介绍请…

云计算-期末复习题-框架设计/选择/填空/简答(2)

目录 框架设计 1.负载分布架构 2.动态可扩展架构 3.弹性资源容量架构 4.服务负载均衡架构 5.云爆发结构 6.弹性磁盘供给结构 7.负载均衡的虚拟服务器实例架构 填空题/简答题 单选题 多选题 云计算期末复习部分练习题,包括最后的部分框架设计大题(只是部分…

C++ | Leetcode C++题解之第200题岛屿数量

题目&#xff1a; 题解&#xff1a; class Solution { private:void dfs(vector<vector<char>>& grid, int r, int c) {int nr grid.size();int nc grid[0].size();grid[r][c] 0;if (r - 1 > 0 && grid[r-1][c] 1) dfs(grid, r - 1, c);if (r …

基于HarmonyOS NEXT开发智能提醒助手

目录 目录 目录 前言 关于HarmonyOS NEXT 智能提醒助手需求分析 智能提醒助手设计 1、系统架构 2、功能模块 智能提醒助手的应用场景 智能提醒助手的竞争力 具体技术实现 未来展望 结束语 前言 随着智能设备的普及和物联网技术的飞速发展&#xff0c;人们对于智能…

云计算 | 期末梳理(下)

1.模运算 2. 拓展欧几里得算法 3.扩散和混淆、攻击的分类 香农的贡献:定义了理论安全性,提出扩散和混淆原则,奠定了密码学的理论基础。扩散:将每一位明文尽可能地散布到多个输出密文中去,以更隐蔽明文数字的统计特性。混淆:使密文的统计特性与明文密钥之间的关系尽量复杂…