K 近邻、K-NN 算法图文详解

1. 为什么学习KNN算法

KNN是监督学习分类算法,主要解决现实生活中分类问题。根据目标的不同将监督学习任务分为了分类学习及回归预测问题。

KNN(K-Nearest Neihbor,KNN)K近邻是机器学习算法中理论最简单,最好理解的算法,是一个非常适合入门的算法,拥有如下特性:

  • 思想极度简单,应用数学知识少(近乎为零),对于很多不擅长数学的小伙伴十分友好
  • 虽然算法简单,但效果也不错

2. KNN 原理

在这里插入图片描述
上图中每一个数据点代表一个肿瘤病历:

  • 横轴表示肿瘤大小,纵轴表示发现时间
  • 恶性肿瘤用蓝色表示,良性肿瘤用红色表示

疑问:新来了一个病人(下图绿色的点),如何判断新来的病人(即绿色点)是良性肿瘤还是恶性肿瘤?

在这里插入图片描述

解决方法:k-近邻算法的做法如下:
(1)取一个值k=3(k值后面介绍,现在可以理解为算法的使用者根据经验取的最优值)
(2)在所有的点中找到距离绿色点最近的三个点
(3)让最近的点所属的类别进行投票
(4)最近的三个点都是蓝色的,所以该病人对应的应该也是蓝色,即恶性肿瘤。


3. 距离度量方法

机器学习算法中,经常需要 判断两个样本之间是否相似 ,比如KNN,K-means,推荐算法中的协同过滤等等,常用的套路是 将相似的判断转换成距离的计算 ,距离近的样本相似程度高,距离远的相似程度低。所以度量距离是很多算法中的关键步骤。

KNN算法中要求数据的所有特征都用数值表示。若在数据特征中存在非数值类型,必须采用手段将其进行量化为数值。

  • 比如样本特征中包含有颜色(红、绿、蓝)一项,颜色之间没有距离可言,可通过将颜色转化为 灰度值来实现距离计算
  • 每个特征都用数值表示,样本之间就可以计算出彼此的距离来
3.1 欧式距离

在这里插入图片描述

3.2 曼哈顿距离

在这里插入图片描述

3.3 切比雪夫距离(了解)
3.4 闵式距离

闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。
在这里插入图片描述

其中p是一个变参数:

  • 当 p=1 时,就是曼哈顿距离;
  • 当 p=2 时,就是欧氏距离;
  • 当 p→∞ 时,就是切比雪夫距离。

根据 p 的不同,闵氏距离可以表示某一类/种的距离。


4. 归一化和标准化

样本中有多个特征,每一个特征都有自己的定义域和取值范围,他们对距离计算也是不同的,如取值较大的影响力会盖过取值较小的参数。因此,为了公平,样本参数必须做一些归一化处理,将不同的特征都缩放到相同的区间或者分布内。
在这里插入图片描述

4.1 归一化
from sklearn.preprocessing import MinMaxScaler# 1. 准备数据
data = [[90, 2, 10, 40],[60, 4, 15, 45],[75, 3, 13, 46]]
# 2. 初始化归一化对象
transformer = MinMaxScaler()
# 3. 对原始特征进行变换
data = transformer.fit_transform(data)
# 4. 打印归一化后的结果
print(data)

归一化受到最大值与最小值的影响,这种方法容易受到异常数据的影响, 鲁棒性较差,适合传统精确小数据场景

4.2 标准化
from sklearn.preprocessing import StandardScaler# 1. 准备数据
data = [[90, 2, 10, 40],[60, 4, 15, 45],[75, 3, 13, 46]]
# 2. 初始化标准化对象
transformer = StandardScaler()
# 3. 对原始特征进行变换
data = transformer.fit_transform(data)
# 4. 打印归一化后的结果
print(data)

对于标准化来说,如果出现异常点,由于具有一定数据量,少量的异常点对于平均值的影响并不大


5. K 值选择问题

KNN算法的关键是什么?

答案一定是K值的选择,下图中K=3,属于红色三角形,K=5属于蓝色的正方形。这个时候就是K选择困难的时候。

在这里插入图片描述

使用 scikit-learn 提供的 GridSearchCV 工具, 配合交叉验证法可以搜索参数组合.

from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV# 1. 加载数据集
x, y = load_iris(return_X_y=True)# 2. 分割数据集
x_train, x_test, y_train, y_test = \train_test_split(x, y, test_size=0.2, stratify=y, random_state=0)# 3. 创建网格搜索对象
estimator = KNeighborsClassifier()
param_grid = {'n_neighbors': [1, 3, 5, 7]}
estimator = GridSearchCV(estimator, param_grid=param_grid, cv=5, verbose=0)
estimator.fit(x_train, y_train)# 4. 打印最优参数
print('最优参数组合:', estimator.best_params_, '最好得分:', estimator.best_score_)# 4. 测试集评估模型
print('测试集准确率:', estimator.score(x_test, y_test))

6. 数据集划分

为了能够评估模型的泛化能力,可以通过实验测试对学习器的泛化能力进行评估,进而做出选择。因此需要使用一个 “测试集” 来测试学习器对新样本的判别能力,以测试集上的 “测试误差” 作为泛化误差的近似。

6.1 留出法(简单交叉验证)

留出法 (hold-out) 将数据集 D 划分为两个互斥的集合,其中一个集合作为训练集 S,另一个作为测试集 T。

from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import ShuffleSplit
from collections import Counter
from sklearn.datasets import load_irisdef test01():# 1. 加载数据集x, y = load_iris(return_X_y=True)print('原始类别比例:', Counter(y))# 2. 留出法(随机分割)x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)print('随机类别分割:', Counter(y_train), Counter(y_test))# 3. 留出法(分层分割)x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y)print('分层类别分割:', Counter(y_train), Counter(y_test))def test02():# 1. 加载数据集x, y = load_iris(return_X_y=True)print('原始类别比例:', Counter(y))print('*' * 40)# 2. 多次划分(随机分割)spliter = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)for train, test in spliter.split(x, y):print('随机多次分割:', Counter(y[test]))print('*' * 40)# 3. 多次划分(分层分割)spliter = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0)for train, test in spliter.split(x, y):print('分层多次分割:', Counter(y[test]))if __name__ == '__main__':test01()test02()
6.2 交叉验证法

K-Fold交叉验证,将数据随机且均匀地分成k分,每次使用k-1份数据作为训练,而使用剩下的一份数据进行测试

from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from collections import Counter
from sklearn.datasets import load_irisdef test():# 1. 加载数据集x, y = load_iris(return_X_y=True)print('原始类别比例:', Counter(y))print('*' * 40)# 2. 随机交叉验证spliter = KFold(n_splits=5, shuffle=True, random_state=0)for train, test in spliter.split(x, y):print('随机交叉验证:', Counter(y[test]))print('*' * 40)# 3. 分层交叉验证spliter = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)for train, test in spliter.split(x, y):print('分层交叉验证:', Counter(y[test]))if __name__ == '__main__':test()
6.3 留一法

留一法( Leave-One-Out,简称LOO),即每次抽取一个样本做为测试集。

from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import LeavePOut
from sklearn.datasets import load_iris
from collections import Counterdef test01():# 1. 加载数据集x, y = load_iris(return_X_y=True)print('原始类别比例:', Counter(y))print('*' * 40)# 2. 留一法spliter = LeaveOneOut()for train, test in spliter.split(x, y):print('训练集:', len(train), '测试集:', len(test), test)print('*' * 40)# 3. 留P法spliter = LeavePOut(p=3)for train, test in spliter.split(x, y):print('训练集:', len(train), '测试集:', len(test), test)if __name__ == '__main__':test01()
6.4 自助法

每次随机从D中抽出一个样本,将其拷贝放入D,然后再将该样本放回初始数据集D中,使得该样本在下次采样时仍有可能被抽到;
这个过程重复执行m次后,我们就得到了包含m个样本的数据集D′,这就是自助采样的结果。

import pandas as pdif __name__ == '__main__':# 1. 构造数据集data = [[90, 2, 10, 40],[60, 4, 15, 45],[75, 3, 13, 46],[78, 2, 64, 22]]data = pd.DataFrame(data)print('数据集:\n',data)print('*' * 30)# 2. 产生训练集train = data.sample(frac=1, replace=True)print('训练集:\n', train)print('*' * 30)# 3. 产生测试集test = data.loc[data.index.difference(train.index)]print('测试集:\n', test)

7. 可执行示例代码

以下是 K-NN 算法的实现示例代码,使用 scikit-learn 库:

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score# 示例数据
X = np.array([[1, 2], [2, 3], [3, 4], [6, 7], [7, 8], [8, 9]])
y = np.array([0, 0, 0, 1, 1, 1])# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)# 创建KNN分类器
knn = KNeighborsClassifier(n_neighbors=3)# 训练模型(实际上只是存储数据)
knn.fit(X_train, y_train)# 进行预测
y_pred = knn.predict(X_test)# 计算准确率,分类算法的评估
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

通过这个示例,可以看到 K-NN 算法的基本流程和实现。该算法通过计算距离来进行分类,并可以通过调整 K 值来优化模型性能。


8. K-NN 算法总结

K-NN(K-Nearest Neighbors)算法是一种基于实例的学习方法,用于分类和回归。它通过计算样本与训练集中所有样本之间的距离,选择最近的 K 个邻居,然后根据这些邻居的标签进行预测。

特点
  1. 基于实例:没有显式的训练过程,直接使用训练数据进行预测。
  2. 懒惰学习:训练阶段只是存储数据,实际的计算发生在预测阶段。
  3. 非参数化:不对数据进行任何假设。
优点
  1. 简单易实现:实现起来相对简单,理解容易。
  2. 无需假设数据分布:对数据的分布没有任何假设。
  3. 适用于分类和回归:可以同时用于分类和回归问题。
  4. 灵活性:可以处理多类别分类问题。
缺点
  1. 计算复杂度高:预测时需要计算新样本与所有训练样本的距离,计算量大,尤其是数据量大时。
  2. 存储复杂度高:需要存储所有的训练数据。
  3. 对噪音敏感:容易受到噪音和异常值的影响。
  4. 维度灾难:高维数据时,计算距离的效果会变差,需要进行降维处理。
关键
  1. 选择合适的 K 值:K 值过小容易过拟合,K 值过大容易欠拟合。通常通过交叉验证选择合适的 K 值。
  2. 距离度量:常用的距离度量方法有欧氏距离、曼哈顿距离、闵可夫斯基距离等。
  3. 特征缩放:在计算距离前,需要对特征进行标准化或归一化处理,以避免特征值范围差异导致的计算偏差。
过程
  1. 数据准备:准备训练数据集和测试数据集。
  2. 计算距离:对于每个测试样本,计算它与所有训练样本之间的距离。
  3. 选择邻居:选择距离最近的 K 个邻居。
  4. 投票或平均
    • 分类:对 K 个邻居的类别进行投票,选择出现次数最多的类别作为预测结果。
    • 回归:对 K 个邻居的目标值进行平均,作为预测结果。
  5. 输出结果:输出测试样本的预测结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/366054.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Android面试八股文】性能优化相关面试题: 什么是内存抖动?什么是内存泄漏?

文章目录 一、什么是内存抖动?内存抖动的问题卡顿OOM(Out Of Memory)二、什么是内存泄漏(Memory Leak)?引用计数法可达性分析法一、什么是内存抖动? 在Java中,每创建一个对象,就会申请一块内存,存储对象信息; 每分配一块内存,程序的可用内存也就少一块; 当程序…

(1)Jupyter Notebook 下载及安装

目录 1. Jupyter Notebook是什么?2. Jupyter Notebook特征3. 应用3. 利用Google Colab安装Jupyter Notebook3.1 什么是 Colab?3.2 访问 Google Colab 1. Jupyter Notebook是什么? 百度百科: Jupyter Notebook(此前被称为 IPython …

C语言部分复习笔记

1. 指针和数组 数组指针 和 指针数组 int* p1[10]; // 指针数组int (*p2)[10]; // 数组指针 因为 [] 的优先级比 * 高,p先和 [] 结合说明p是一个数组,p先和*结合说明p是一个指针 括号保证p先和*结合,说明p是一个指针变量,然后指…

R语言 | 使用ggplot绘制柱状图,在柱子中显示数值和显著性

原文链接:使用ggplot绘制柱状图,在柱子中显示数值和显著性 本期教程 获得本期教程示例数据,后台回复关键词:20240628。(PS:在社群中,可获得往期和未来教程所有数据和代码) 往期教程…

Windows宝塔面板部署ThinkPHP8.0创建Vue项目案例

安装ThinkPHP8.0 登录宝塔面板,创建一个站点。 输入composer代码,执行完成后自动创建TP目录 composer create-project topthink/think tp 网站目录设置为tp,运行目录设置为public 设置PHP版本为8.0以上,不然会出现下面的报错代…

1-5题查询 - 高频 SQL 50 题基础版

目录 1. 相关知识点2. 例题2.1.可回收且低脂的产品2.2.寻找用户推荐人2.3.大的国家2.4. 文章浏览 I2.5. 无效的推文 1. 相关知识点 sql判断,不包含null,判断不出来distinct是通过查询的结果来去除重复记录ASC升序计算字符长度 CHAR_LENGTH() 或 LENGTH(…

js实现blockly后台解释器,可以单步执行,可以调用c/c++函数

实现原理 解析blockly语法树,使用js管理状态,实际使用lua执行,c/c函数调用使用lua调用c/c函数的能力 可以单行执行 已实现if功能 TODO for循环功能 函数功能 单步执行效果图 直接执行效果图 源代码 //0 暂停 1 单步执行 2 断点 //创建…

[无广告!纯干货]免费用CodeFlying自动化生成一个专属的AI机器人

前言: 真心话,花3分钟看文章,再花5分钟体验,你会回来给我点赞的。 随着AIGC(人工智能生成内容)行业的迅猛发展,人工智能正在以前所未有的速度和方式改变我们的生活。 它不仅在娱乐、教育、医疗…

[数据集][目标检测]游泳者溺水检测数据集VOC+YOLO格式8275张4类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):8275 标注数量(xml文件个数):8275 标注数量(txt文件个数):8275 标注…

汇聚荣拼多多电商好不好?

拼多多电商好不好?这是一个值得探讨的问题。拼多多作为中国领先的电商平台之一,以其独特的商业模式和创新的营销策略吸引了大量用户。然而,对于这个问题的回答并不是简单的好或不好,而是需要从多个方面进行综合分析。 一、商品质量 来看拼多…

ONLYOFFICE:开启高效办公新时代的全能利器

ONLYOFFICE官网链接:在线办公套件 | ONLYOFFICE 在线PDF查看器和转换器 | ONLYOFFICE 在数字化办公日益普及的今天,一款高效、易用、功能强大的办公软件成为了企业和个人不可或缺的得力助手。而ONLYOFFICE,正是这样一款集多种功能于一身的优…

Spring系统学习 - 基于注解管理Bean

什么是基于注解的方式管理Bean 在 Spring 框架中,基于注解的方式管理 Bean 是一种非常流行且现代的方法。它允许你通过在类、方法或字段上添加特定的注解来声明 Bean 的创建和依赖注入,从而避免了在 XML 配置文件中定义 Bean 的繁琐工作。 注解和 XML …

Linux开发讲课29---Linux USB 设备驱动模型

Linux 内核源码:include\linux\usb.h Linux 内核源码:drivers\hid\usbhid\usbmouse.c 1. BUS/DEV/DRV 模型 "USB 接口"是逻辑上的 USB 设备,编写的 usb_driver 驱动程序,支持的是"USB 接口": US…

Linux:系统安全及应用

目录 一、系统账号管理 1.1、系统账号清理 1.2、密码安全控制 1.3、命令历史限制 二、限制su命令用户 三、PAM安全认证 四、sudo机制提升权限 4.1、sudo机制介绍 4.2、用户别名案例 4.3、启用sudo操作日志 4.4、其他案列sudo 4.5、开关机安全控制 4.6、限制更改GR…

无线物联网练习题

文章目录 选择填空简答大题 选择 不属于物联网感知技术的是(A) A:ZigBee B:红外传感器 C:FRID D:传感器 ZigBee是一种无线通信技术,虽然它常用于物联网中作为设备之间的通信手段,但它本身并不是一种感知技术 关于物联网于与互联网的区别的描述&#xff…

昇思第6天

函数式自动微分 神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度&#…

一站式uniapp优质源码项目模版交易平台的崛起与影响

一、引言 随着信息技术的飞速发展,软件源码已成为推动行业进步的重要力量。源码的获取、交易和流通,对于开发者、企业以及项目团队而言,具有极其重要的意义。为满足市场对高质量源码资源的迫切需求,一站式uniapp优质源码项目模版…

501、二叉搜索树中的众数

给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。如果树中有不止一个众数,可以按 任意顺序 返回。 假定 BST 满足如下定义&#xff1…

Java的Object类

概述:所有类的根类(父类),所有的类都会直接或者间接继承Object类 Object中的toString()方法: 如果不重写这个toString方法:默认形式是: return getClass().getName() "" Integer.toHexString(hashCode()); 这个我们可以进到Obj…

鸿蒙开发岗位就业前景分析

在信息技术飞速发展的今天,操作系统作为计算机的灵魂,一直是技术创新和市场竞争的焦点。随着华为鸿蒙操作系统的推出,鸿蒙开发岗位逐渐成为IT行业的热门话题。本文将深入探讨鸿蒙开发岗位的就业前景,揭示这一领域的就业新趋势&…