线性代数|机器学习-P21概率定义和Markov不等式

文章目录

1. 样本期望和方差

1.1 样本期望 E ( X ) \mathrm{E}(X) E(X)

假设我们有N个样本及概率如下 x 1 → p 1 , x 2 → p 2 , ⋯ , x n → p n x_1\rightarrow p_1,x_2\rightarrow p_2,\cdots,x_n\rightarrow p_n x1p1,x2p2,,xnpn,那么样本期望 E ( X ) E(X) E(X)
E ( X ) = m = ∑ i = 1 N p i x i \begin{equation} \mathrm{E}(X)=m=\sum_{i=1}^Np_ix_i \end{equation} E(X)=m=i=1Npixi

  • 函数期望:
    E ( f ( x ) ) = m = ∑ i = 1 N p i f ( x i ) \begin{equation} \mathrm{E}(f(x))=m=\sum_{i=1}^Np_if(x_i) \end{equation} E(f(x))=m=i=1Npif(xi)

1.2 样本期望 D ( X ) \mathrm{D}(X) D(X)

D ( X ) = σ 2 = E [ ( x i − m ) 2 ] \begin{equation} \mathrm{D}(X)=\sigma^2=\mathrm{E}[(x_i-m)^2] \end{equation} D(X)=σ2=E[(xim)2]

  • 展开可得:
    D ( X ) = ∑ i = 1 N p i ( x i − m ) 2 \begin{equation} \mathrm{D}(X)=\sum_{i=1}^Np_i(x_i-m)^2 \end{equation} D(X)=i=1Npi(xim)2
  • 展开可得:
    = p 1 ( x 1 2 + m 2 − 2 x 1 m ) + p 2 ( x 2 2 + m 2 − 2 x 2 m ) + ⋯ + p n ( x n 2 + m 2 − 2 x n m ) \begin{equation} =p_1(x_1^2+m^2-2x_1m)+p_2(x_2^2+m^2-2x_2m)+\cdots+p_n(x_n^2+m^2-2x_nm) \end{equation} =p1(x12+m22x1m)+p2(x22+m22x2m)++pn(xn2+m22xnm)
    = p 1 ( x 1 2 + x 2 2 + ⋯ + x n 2 ) + ( p 1 + p 2 + ⋯ + p n ) m 2 − 2 m ( p 1 x 1 + p 2 x 2 + ⋯ + p n x n ) \begin{equation} =p_1(x_1^2+x_2^2+\cdots+x_n^2)+(p_1+p_2+\cdots+p_n)m^2-2m(p_1x_1+p_2x_2+\cdots+p_nx_n) \end{equation} =p1(x12+x22++xn2)+(p1+p2++pn)m22m(p1x1+p2x2++pnxn)
  • 因为 p 1 + p 2 + ⋯ + p n = 1 , p 1 x 1 + p 2 x 2 + ⋯ + p n x n = m p_1+p_2+\cdots+p_n=1,p_1x_1+p_2x_2+\cdots+p_nx_n=m p1+p2++pn=1,p1x1+p2x2++pnxn=m
  • E ( X 2 ) = p 1 ( x 1 2 + x 2 2 + ⋯ + x n 2 ) , E ( X ) = m = ∑ i = 1 N p i x i \mathrm{E}(X^2)=p_1(x_1^2+x_2^2+\cdots+x_n^2),\mathrm{E}(X)=m=\sum_{i=1}^Np_ix_i E(X2)=p1(x12+x22++xn2),E(X)=m=i=1Npixi
  • 整理可得:
    D ( X ) = E ( X 2 ) + m 2 − 2 m 2 = E ( X 2 ) − [ E ( X ) ] 2 \begin{equation} D(X)=\mathrm{E}(X^2)+m^2-2m^2=\mathrm{E}(X^2)-[\mathrm{E}(X)]^2 \end{equation} D(X)=E(X2)+m22m2=E(X2)[E(X)]2

2. Markov 不等式&Chebyshev不等式

2.1 Markov不等式公式 概述

假设X是一个均值有限的非负随机变量,均值为 E ( X ) \mathrm{E}(X) E(X),这意味着 P ( X < 0 ) = 0 P(X<0)=0 P(X<0)=0,那么对于任意的正数a,有
P r o b ( X ≥ a ) ≤ E ( X ) a , X i ≥ 0 \begin{equation} Prob(X\ge a)\le\frac{\mathrm{E}(X)}{a},X_i\ge 0 \end{equation} Prob(Xa)aE(X),Xi0

  • 同等公式如下:
    P r o b ( X < a ) ≥ 1 − E ( X ) a \begin{equation} Prob(X< a)\ge 1-\frac{\mathrm{E}(X)}{a} \end{equation} Prob(X<a)1aE(X)

2.2 Markov不等式公式 证明:

我们定义样本分布的概率密度为 f ( x ) f(x) f(x),如下图所述:
在这里插入图片描述

  • 我们可以得到期望E(X)表示如下:
    E ( X ) = ∫ 0 ∞ x f ( x ) d x \begin{equation} \mathrm{E}(X)=\int_{0}^{\infty}xf(x)\mathrm{d}x \end{equation} E(X)=0xf(x)dx
  • 因为 x , f(x)我们定义均大于等于0,所以可以进行缩放,将原来积分从0到正无穷缩小到a到正无穷
    ∫ 0 ∞ x f ( x ) d x ≥ ∫ a ∞ x f ( x ) d x \begin{equation} \int_{0}^{\infty}xf(x)\mathrm{d}x\ge\int_{a}^{\infty}xf(x)\mathrm{d}x \end{equation} 0xf(x)dxaxf(x)dx
  • 因为每个x现在都大于等于a, x ≥ a x\ge a xa,所以可以将系数x缩放为a,即:
    ∫ 0 ∞ x f ( x ) d x ≥ ∫ a ∞ x f ( x ) d x ≥ ∫ a ∞ a f ( x ) d x = a ∫ a ∞ f ( x ) d x \begin{equation} \int_{0}^{\infty}xf(x)\mathrm{d}x\ge\int_{a}^{\infty}xf(x)\mathrm{d}x\ge\int_{a}^{\infty}af(x)\mathrm{d}x=a\int_{a}^{\infty}f(x)\mathrm{d}x \end{equation} 0xf(x)dxaxf(x)dxaaf(x)dx=aaf(x)dx
  • 这里的 ∫ a ∞ f ( x ) d x = P ( X ≥ a ) \int_{a}^{\infty}f(x)\mathrm{d}x=P(X\ge a) af(x)dx=P(Xa),则整理上面公式可得:
    E ( X ) ≥ a P ( X ≥ a ) → P ( X ≥ a ) ≤ E ( X ) a \begin{equation} \mathrm{E}(X)\ge a P(X\ge a)\rightarrow P(X\ge a)\le \frac{\mathrm{E}(X)}{a} \end{equation} E(X)aP(Xa)P(Xa)aE(X)
  • 综上所述,我们得到马尔科夫不等式如下:
    P ( X ≥ a ) ≤ E ( X ) a \begin{equation} P(X\ge a)\le \frac{\mathrm{E}(X)}{a} \end{equation} P(Xa)aE(X)
  • 假设样本和概率表示如下:
Sample x 1 = 1 x_1=1 x1=1 x 2 = 2 x_2=2 x2=2 x 3 = 3 x_3=3 x3=3 x 4 = 4 x_4=4 x4=4 x 5 = 5 x_5=5 x5=5
P p 1 p_1 p1 p 2 p_2 p2 p 3 p_3 p3 p 4 p_4 p4 p 5 p_5 p5

E ( X ) = p 1 x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 \begin{equation} \mathrm{E}(X)=p_1x_1+p_2x_2+p_3x_3+p_4x_4+p_5x_5 \end{equation} E(X)=p1x1+p2x2+p3x3+p4x4+p5x5

  • 我们假设期望为1 , E ( X ) = 1 \mathrm{E}(X)=1 E(X)=1
    - E ( X ) = p 1 x 1 + p 2 x 2 + p 3 x 3 + p 4 x 4 + p 5 x 5 = 1 \begin{equation} \mathrm{E}(X)=p_1x_1+p_2x_2+p_3x_3+p_4x_4+p_5x_5=1 \end{equation} E(X)=p1x1+p2x2+p3x3+p4x4+p5x5=1
  • X>3的概率如下:
    P r o b ( X ≥ 3 ) ≤ E ( X ) 3 → P r o b ( X ≥ 3 ) ≤ 1 3 \begin{equation} Prob(X\ge 3)\le\frac{\mathrm{E}(X)}{3}\rightarrow Prob(X\ge 3)\le\frac{1}{3}\end{equation} Prob(X3)3E(X)Prob(X3)31
    p 3 + p 4 + p 5 ≤ 1 3 \begin{equation} p_3+p_4+p_5\le\frac{1}{3}\end{equation} p3+p4+p531

2.3 Markov不等式公式 举例:

假设Andrew在平时工作一个星期中平均下来一个星期会犯 4 次错,也就是期望 E ( X ) = 4 \mathrm{E}(X)=4 E(X)=4,那么我们想知道如果Andrew在平时工作一个星期中会犯 10 次以上的错的概率多少?转换到数学公式如下:
E ( X ) = 4 , P r o b ( X > 10 ) ≤ E ( X ) 10 → P r o b ( X > 10 ) ≤ 40 % \begin{equation} \mathrm{E}(X)=4, Prob(X>10)\le \frac{\mathrm{E}(X)}{10}\rightarrow Prob(X>10)\le40\% \end{equation} E(X)=4,Prob(X>10)10E(X)Prob(X>10)40%

  • 也就是说Andrew 在平时一个星期中犯错10次以上的概率不会超过 40 % 40\% 40%

2.4 Chebyshev不等式公式概述:

如果随机变量X的期望 μ \mu μ,方差 σ \sigma σ存在,则对于任意 ϵ > 0 \epsilon >0 ϵ>0,有如下公式:
P ( ∣ X − μ ∣ ≥ ϵ ) ≤ σ 2 ϵ 2 \begin{equation} P{(|X-\mu|\ge \epsilon)}\le \frac{\sigma^2}{\epsilon^2} \end{equation} P(Xμϵ)ϵ2σ2

2.5 Chebyshev不等式公式证明:

我们已经证明了马尔科夫不等式表示如下:
P ( Y ≥ a ) ≤ E ( Y ) a \begin{equation} P(Y\ge a)\le \frac{\mathrm{E}(Y)}{a} \end{equation} P(Ya)aE(Y)

  • 这里我们令 Y = ( X − μ ) 2 , a = ϵ 2 Y=(X-\mu)^2,a=\epsilon^2 Y=(Xμ)2,a=ϵ2代入到公式中:
    P ( ( X − μ ) 2 ≥ ϵ 2 ) ≤ E ( ( X − μ ) 2 ) ϵ 2 \begin{equation} P((X-\mu)^2\ge \epsilon^2)\le \frac{\mathrm{E}((X-\mu)^2)}{\epsilon^2} \end{equation} P((Xμ)2ϵ2)ϵ2E((Xμ)2)
  • 我们可以发现 P ( ( X − μ ) 2 ≥ ϵ 2 ) P((X-\mu)^2\ge \epsilon^2) P((Xμ)2ϵ2)等效于 P ( ∣ X − μ ∣ ≥ ϵ ) P(|X-\mu|\ge \epsilon) P(Xμϵ), σ 2 = E ( ( X − μ ) 2 ) \sigma^2=\mathrm{E}((X-\mu)^2) σ2=E((Xμ)2)
  • 整理上述公式可得切尔雪夫不等式结果:
    P ( ∣ X − μ ∣ ≥ ϵ ) ≤ σ 2 ϵ 2 \begin{equation} P(|X-\mu|\ge \epsilon)\le \frac{\sigma^2}{\epsilon^2} \end{equation} P(Xμϵ)ϵ2σ2

3. 协方差矩阵

Ω \Omega Ω为样本空间,P是定义在 Ω \Omega Ω的事件族 Σ \Sigma Σ上的概率,换句话来说, Ω , Σ , P \Omega,\Sigma,P Ω,Σ,P是个概率空间;若X与Y定义在 Ω \Omega Ω上两个实数随机变量,期望分别为:
E ( X ) = ∫ Ω X d P = μ ; E ( Y ) = ∫ Ω Y d P = v ; \begin{equation} \mathrm{E}(X)=\int_{\Omega}X\mathrm{d}P=\mu;\mathrm{E}(Y)=\int_{\Omega}Y\mathrm{d}P=v; \end{equation} E(X)=ΩXdP=μ;E(Y)=ΩYdP=v;

  • 则两者间的协方差定义为:
    c o v ( X , Y ) = E [ ( X − μ ) ( Y − v ) ] \begin{equation} \mathrm{cov}(X,Y)=\mathrm{E}[(X-\mu)(Y-v)] \end{equation} cov(X,Y)=E[(Xμ)(Yv)]

3.1 举例

[感觉老师举的例子不好]
假设我们有两个硬币,X,Y 正反的概率均为0.5,那么概率矩阵为:

  • 当两个硬币单独扔下去时,概率矩阵如下:
Sample x 1 = 正 x_1=正 x1= x 2 = 反 x_2=反 x2=
y 1 = 正 y_1=正 y1= 1 4 \frac{1}{4} 41 1 4 \frac{1}{4} 41
y 2 = 反 y_2=反 y2= 1 4 \frac{1}{4} 41 1 4 \frac{1}{4} 41
  • 当两个硬币粘贴在一起扔下去时,概率矩阵如下:
Sample x 1 = 正 x_1=正 x1= x 2 = 反 x_2=反 x2=
y 1 = 正 y_1=正 y1= 1 2 \frac{1}{2} 21 0 0 0
y 2 = 反 y_2=反 y2= 0 0 0 1 2 \frac{1}{2} 21
  • 当三个硬币单独扔下去时,两个硬币用平面表示,三个硬币用立方体表示
    P H H H = 1 8 \begin{equation} P_{HHH}=\frac{1}{8} \end{equation} PHHH=81
    在这里插入图片描述

3.2 Python 代码

C O V ( X , Y ) = 0.14516142787498987 \mathrm{COV}(X,Y)= 0.14516142787498987 COV(X,Y)=0.14516142787498987

import numpy as np
import matplotlib.pyplot as plt# Generate some data
x = np.random.rand(100)
y = 2 * x + np.random.normal(0, 0.1, 100)  # y is roughly 2 times x with some noise# Calculate the covariance matrix
cov_matrix = np.cov(x, y)# Extract the covariance value
cov_xy = cov_matrix[0, 1]print(f"Covariance between x and y: {cov_xy}")# Plotting the data
plt.scatter(x, y)
plt.title('Scatter plot of x and y')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/366142.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

反向沙箱技术:安全隔离上网

在信息化建设不断深化的今天&#xff0c;业务系统的安全性和稳定性成为各公司和相关部门关注的焦点。面对日益复杂的网络威胁&#xff0c;传统的安全防护手段已难以满足需求。深信达反向沙箱技术&#xff0c;以其独特的设计和强大的功能&#xff0c;成为保障政务系统信息安全的…

【论文阅读】-- TimeNotes:时间序列数据的有效图表可视化和交互技术研究

TimeNotes: A Study on Effective Chart Visualization and Interaction Techniques for Time-Series Data 摘要1 介绍和动机2 文献2.1 时间序列数据探索2.1.1 数据聚合2.1.2 基于透镜2.1.3 基于布局 3 任务和设计3.1 数据3.2 领域表征3.3 探索、分析和呈现 4 TimeNotes4.1 布局…

安装KB5039212更新卡在25% 或者 96% 进度

系统之家7月1日消息&#xff0c;微软在6月11日的补丁星期二活动中&#xff0c;为Windows 11系统推出了KB5039212更新。然而&#xff0c;部分用户在Windows社区中反映&#xff0c;安装过程中出现失败&#xff0c;进度条在25%或96%时卡住。对于遇到此类问题的Windows 11用户&…

AI基本概念(人工智能、机器学习、深度学习)

人工智能 、 机器学习、 深度学习的概念和关系 人工智能 &#xff08;Artificial Intelligence&#xff09;AI- 机器展现出人类智慧机器学习 &#xff08;Machine Learning) ML, 达到人工智能的方法深度学习 &#xff08;Deep Learning&#xff09;DL,执行机器学习的技术 从范围…

构建高效的数字风控系统:应对现代网络威胁的策略与实践

文章目录 构建高效的数字风控系统&#xff1a;应对现代网络威胁的策略与实践1. 数字风控基本概念1.1 数字风控&#xff08;数字化风控&#xff09;1.2 数字风控的原理1.3 常见应用场景 2. 数字风控的必要性3. 构建高效的数字风控系统3.1 顶层设计与规划3.2 数据基础建设3.3 风险…

Python从0到100(三十三):xpath和lxml类库

1. 为什么要学习xpath和lxml lxml是一款高性能的 Python HTML/XML 解析器&#xff0c;我们可以利用XPath&#xff0c;来快速的定位特定元素以及获取节点信息 2. 什么是xpath XPath&#xff0c;全称为XML Path Language&#xff0c;是一种用于在XML文档中进行导航和数据提取的…

SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测

SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测 目录 SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.【SCI一区级】Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测&#xff08;程…

中国网络安全审查认证和市场监管大数据中心数据合规官CCRC-DCO

关于CCRC-DCO证书的颁发机构&#xff0c;它是由中国网络安全审查认证与市场监管大数据中心&#xff08;简称CCRC&#xff09;负责。 该中心在2006年得到中央机构编制委员会办公室的批准成立&#xff0c;隶属于国家市场监督管理总局&#xff0c;是其直辖的事业单位。 依据《网络…

技术派全局异常处理

前言 全局的异常处理是Java后端不可或缺的一部分&#xff0c;可以提高代码的健壮性和可维护性。 在我们的开发中&#xff0c;总是难免会碰到一些未经处理的异常&#xff0c;假如没有做全局异常处理&#xff0c;那么我们返回给用户的信息应该是不友好的&#xff0c;很抽象的&am…

认识100种电路之耦合电路

在电子电路的世界中&#xff0c;耦合电路宛如一座精巧的桥梁&#xff0c;连接着各个功能模块&#xff0c;发挥着至关重要的作用。 【为什么电路需要耦合】 在复杂的电子系统中&#xff0c;不同的电路模块往往需要协同工作&#xff0c;以实现特定的功能。然而&#xff0c;这些模…

QuickBooks 2024 for Mac:财务智慧,触手可及

QuickBooks 2024 for Mac是一款专为Mac用户设计的专业财务管理软件&#xff0c;它集成了多种实用功能&#xff0c;助力企业和个人用户高效管理财务事务。 &#x1f4ca; 全面的财务管理工具&#xff1a;QuickBooks 2024 for Mac 提供了一套全面的财务管理功能&#xff0c;包括…

基于昇腾AI | Yolov7模型迁移到昇腾平台EA500I边缘计算盒子的实操指南

近年来&#xff0c;国产化替代的进程正在加快。在众多国产平台中&#xff0c;昇腾平台具有高性能、低功耗、易扩展、软件栈全面成熟等优势&#xff0c;其产品和技术在国内众多领域实现了广泛应用&#xff1b;作为昇腾的APN伙伴和IHV合作伙伴&#xff0c;英码科技携手昇腾推出了…

数据结构之“刷链表题”

&#x1f339;个人主页&#x1f339;&#xff1a;喜欢草莓熊的bear &#x1f339;专栏&#x1f339;&#xff1a;数据结构 目录 前言 一、相交链表 题目链接 大致思路 代码实现 二、环形链表1 题目链接 大致思路 代码实现 三、环形链表2 题目链接 大致思路 代码实…

python sklearn机械学习模型-分类

&#x1f308;所属专栏&#xff1a;【机械学习】✨作者主页&#xff1a; Mr.Zwq✔️个人简介&#xff1a;一个正在努力学技术的Python领域创作者&#xff0c;擅长爬虫&#xff0c;逆向&#xff0c;全栈方向&#xff0c;专注基础和实战分享&#xff0c;欢迎咨询&#xff01; 您…

WIN11,如何同时连接有线网络与WLAN无线网络

之前写了两篇文章&#xff0c;一篇是双网卡多网卡时win11如何设置网卡优先级_多网卡设置网卡优先级-CSDN博客 另一篇是win11 以太网和WLAN冲突 连接网线时导致WiFi掉线 解决_win11 以太网和wifi不能同时生效-CSDN博客 这篇是对上面两篇的补充&#xff1a;主要解决电脑重启后&…

适用于高海拔地区的工业路由器产品

1、西藏背景 西藏&#xff0c;这个位于中国西南部的神秘之地&#xff0c;以其雄伟壮观、神奇瑰丽的自然风光和深厚的文化底蕴&#xff0c;被无数人视为心中的圣地。这里属于高原性气候&#xff0c;具有气温低、气压低&#xff0c;降水少&#xff0c;生态环境十分恶劣。西藏被誉…

计算机网络-第5章运输层

5.1运输层协议概述 5.1.1进程之间的通信 运输层向它上面的应用层提供通信服务&#xff0c;它属于面向通信部分的最高层&#xff0c;同时也是用户功能中的最低层。 通信的两端应当是两个主机中的应用进程。 运输层复用和分用&#xff1a;复用指在发送方不同的应用进程都可以…

Linux下SUID提权学习 - 从原理到使用

目录 1. 文件权限介绍1.1 suid权限1.2 sgid权限1.3 sticky权限 2. SUID权限3. 设置SUID权限4. SUID提权原理5. SUID提权步骤6. 常用指令的提权方法6.1 nmap6.2 find6.3 vim6.4 bash6.5 less6.6 more6.7 其他命令的提权方法 1. 文件权限介绍 linux的文件有普通权限和特殊权限&a…

基于Python的自动化测试框架-Pytest总结-第一弹基础

Pytest总结第一弹基础 入门知识点安装pytest运行pytest测试用例发现规则执行方式命令行执行参数 配置发现规则 如何编写测试Case基础案例断言语句的使用pytest.fail() 和 Exceptions自定义断言函数异常测试测试类形式 pytest的Fixture使用Fixture入门案例使用fixture的Setup、T…

RabbitMQ 之 延迟队列

目录 ​编辑一、延迟队列概念 二、延迟队列使用场景 三、整合 SpringBoot 1、创建项目 2、添加依赖 3、修改配置文件 4、添加 Swagger 配置类 四、队列 TTL 1、代码架构图 2、配置文件代码类 3、生产者 4、消费者 5、结果展示 五、延时队列优化 1、代码架构图 …