【Linux详解】进程地址空间

目录

研究背景

验证地址空间

实验一:父子进程变量地址一致性

实验二:变量值修改后父子进程的差异

分析与结论

实验三:进程地址空间验证

理解进程地址空间

区域与页表

写时拷贝机制

进程地址空间的意义

文章手稿:


xmind: 


研究背景

本文研究基于 Linux kernel 2.6.32 的32位平台进程地址空间的区别与实现。通过具体的代码示例和实验,揭示虚拟地址空间的概念,并探讨其重要性和操作系统对其管理的机制。

程序地址空间的回顾

在学习 C 语言时,常见的程序地址空间布局如下图所示:

#include <stdio.h>
#include <stdlib.h>
int main()
{printf("%s\n", getenv("PATH"));return 0;
}

上述代码展示了典型的程序地址空间结构,但我们对其理解并不深入。通过进一步的代码实验,可以更好地理解程序地址空间的概念。


验证地址空间

实验一:父子进程变量地址一致性

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int g_val = 0;
int main()
{pid_t id = fork();if(id < 0){perror("fork");return 0;}else if(id == 0){ //childprintf("child[%d]: %d : %p\n", getpid(), g_val, &g_val);}else{ //parentprintf("parent[%d]: %d : %p\n", getpid(), g_val, &g_val);}sleep(1);return 0;
}

输出结果(可能因环境而异):

实验二:变量值修改后父子进程的差异

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int g_val = 0;
int main()
{pid_t id = fork();if(id < 0){perror("fork");return 0;}else if(id == 0){ //childg_val=100;printf("child[%d]: %d : %p\n", getpid(), g_val, &g_val);}else{ //parentsleep(3);printf("parent[%d]: %d : %p\n", getpid(), g_val, &g_val);}sleep(1);return 0;
}

输出结果(可能因环境而异):

分析与结论

上述实验表明,父子进程的变量地址相同但内容不同,说明地址为虚拟地址,且父子进程有各自独立的物理地址映射。这验证了虚拟地址的概念,即我们在C/C++中看到的地址是虚拟地址,由操作系统负责将其转化为物理地址。

进程地址空间

程序地址空间实际上是进程地址空间的子集,是系统级的概念。进程地址空间通过虚拟地址映射实现内存独立性,确保进程间互不干扰。

实验三:进程地址空间验证

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>int un_g_val;
int g_val = 100;int main(int argc, char* argv[], char* env[])
{printf("code addr            : %p\n", main);printf("init global addr     : %p\n", &g_val);printf("uninit global addr   : %p\n", &un_g_val);char* m1 = (char*)malloc(100);printf("heap addr            : %p\n", m1);printf("stack addr           : %p\n", &m1);int i = 0;for (i = 0; i < argc; i++) {printf("argv addr        : %p\n", argv[i]);   }for (i = 0; env[i]; i++) {printf("env addr         : %p\n", env[i]);}
}

运行结果

地址整体依次增大,堆区向地址增大方向增长,栈区向地址减少方向增长,验证了堆和栈的挤压式增长方向。

验证静态局部变量

静态修饰的局部变量,编译的时候已经被编译到全局数据区,这一点可以通过以下代码验证:

#include <stdio.h>
#include <stdlib.h>
void func() {static int static_var = 10;printf("static_var addr: %p\n", &static_var);
}
int main() {func();return 0;
}

结论


这也说明了这些变量的地址在全局数据区,而不是局部栈区。


理解进程地址空间

区域与页表

进程地址空间通过 mm_struct 结构体来管理各个区域。每个区域的定义如下:

struct mm_struct {long code_start;long code_end;long init_start;long init_end;long uninit_start;long uninit_end;long heap_start;long heap_end;long stack_start;long stack_end;...
}

用一个start 和end 就可以表示区域

每个区域都有一个 start 和 end,它们之间就有了地址,地址我们称之为虚拟地址,

 然后这些虚拟地址经过页表,就能映射到内存中了。

父子进程全局变量共享与写时拷贝

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>int g_val = 100;
int main(void) 
{pid_t id = fork();if (id == 0) {// childint flag = 0;while (1) {printf("child: %d, ppid: %d, g_val: %d, &g_val: %p\n", getpid(), getppid(), g_val, &g_val);sleep(1);flag++;if (flag == 5) {g_val = 200;printf("child modified g_val\n");}}}else {// fatherwhile (1) {printf("parent: %d, ppid: %d, g_val: %d, &g_val: %p\n", getpid(), getppid(), g_val, &g_val);sleep(2);}}
}

运行结果

在父子进程中,虚拟地址相同但值不同,验证了写时拷贝机制。

写时拷贝机制

写时拷贝是指当父子进程有一方尝试修改变量时,操作系统会为修改方分配新的物理内存并拷贝数据,以确保独立性。

回顾:fork的两个返回值

pid_t id 是属于父进程的栈空间中定义的。

fork 内部 return 会被执行两次,return 的本质就是通过寄存器将返回值写入到接收返回值的变量中。当我们的 id = fork() 时,谁先返回,谁就要发生 写时拷贝。所以,同一个变量会有不同的返回值,本质是因为大家的虚拟地址是一样的,但大家的物理地址是不一样的。


进程地址空间的意义

虚拟地址空间通过软硬结合层,保护内存并简化进程和程序的设计和实现,确保进程的独立性和安全性。

表格:进程地址空间区域划分

区域类型起始地址结束地址
代码区code_startcode_end
初始化全局变量init_startinit_end
未初始化全局变量uninit_startuninit_end
堆区heap_startheap_end
栈区stack_startstack_end

那么有什么意义呢

拓展:os 对大文件的分批加载是怎么实现的呢

采用惰性加载的方式

存在 缺页中断 ,重新申请 填写页表

缺页中断:

当一个进程访问虚拟内存中的某一页时,操作系统会先检查该页是否当前已经被加载到物理内存中。如果这一页已经在物理内存中,CPU就可以直接访问它。但是,如果这一页并没有在物理内存中,就会发生缺页中断

当发生缺页中断时,CPU会暂停当前的执行,并将控制权交给操作系统内核。操作系统内核会首先查找页表,寻找到相关的页面对应的磁盘地址。然后,操作系统会将磁盘上的内容读取到空闲的物理内存页中。

一旦内容被加载到物理内存中,操作系统会更新页表,将该页面的映射关系添加到页表中,然后将控制权交还给进程并重新开始执行。这样,进程可以继续访问所需的内存页面。

整个过程用于解决虚拟内存中的页面不在物理内存中的问题,使得系统看起来好像比它实际拥有的更多内存一样,从而使得多个进程能够共享有限的内存资源,提高内存利用率和系统的整体性能。

就达到分批加载的效果啦

所以 进程 应该是先创建内核数据结构,再执行可执行程序的 

文章手稿:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/366522.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

grpc学习golang版( 二、入门示例 )

系列文章目录 第一章 grpc基本概念与安装 第二章 grpc入门示例 第三章 proto文件数据类型 第四章 多服务示例 第五章 多proto文件示例 第六章 服务器流式传输 第七章 客户端流式传输 第八章 双向流示例 文章目录 一、环境二、编写protobuf文件三、编写server服务端四、编写Clie…

Rust单元测试、集成测试

单元测试、集成测试 在了解了如何在 Rust 中写测试用例后&#xff0c;本章节我们将学习如何实现单元测试、集成测试&#xff0c;其实它们用到的技术还是上一章节中的测试技术&#xff0c;只不过对如何组织测试代码提出了新的要求。 单元测试 单元测试目标是测试某一个代码单…

A4-C四驱高防轮式巡检机器人

在当今数字化和智能化迅速发展的时代&#xff0c;旗晟智能带来了一款革命性的创新产品——A4-C四驱高防轮式巡检机器人。这款机器人以其卓越的性能和多功能性&#xff0c;为工业巡检领域带来了全新的解决方案。 一、产品亮点 1、四驱动力与高防护设计 四驱高防轮式巡检机器人…

环回接口处理 IP 数据报的过程及 Loopback 接口的主要作用

环回接口处理 IP 数据报的过程 IPv4 中 传给环回地址&#xff08;127.0.0.1&#xff09;的任何数据均作为 IP 输入&#xff0c;直接送到环回接口&#xff08;环回&#xff1a;IP 输入队列&#xff09;。 传给广播地址或多播地址的数据报&#xff0c;会复制一份传给环回接口&…

主从同步binlog

主从同步的原理是怎样的 提到主从同步的原理&#xff0c;我们就需要了解在数据库中的一个重要日志文件&#xff0c;那就是 Binlog 二 进制日志&#xff0c;它记录了对数据库进行更新的事件。实际上主从同步的原理就是基于 Binlog 进 行数据同步的。在主从复制过程中&#xff…

FastGPT 调用Qwen 测试Hello world

Ubuntu 安装Qwen/FastGPT_fastgpt message: core.chat.chat api is error or u-CSDN博客 参考上面文档 安装FastGPT后 登录&#xff0c; 点击右上角的 新建 点击 这里&#xff0c;配置AI使用本地 ollama跑的qwen模型 问题&#xff1a;树上有3只鸟&#xff0c;开了一枪&#…

外贸企业选择什么网络?

随着全球化的深入发展&#xff0c;越来越多的国内企业将市场拓展到海外。为了确保外贸业务的顺利进行&#xff0c;企业需要建立一个稳定、安全且高速的网络。那么&#xff0c;外贸企业应该选择哪种网络呢&#xff1f;本文将为您详细介绍。 外贸企业应选择什么网络&#xff1f; …

pytest-yaml-sanmu(五):跳过执行和预期失败

除了手动注册标记之外&#xff0c;pytest 还内置了一些标记可直接使用&#xff0c;每种内置标记都会用例带来不同的特殊效果&#xff0c;本文先介绍 3 种。 1. skip skip 标记通常用于忽略暂时无法执行&#xff0c;或不需要执行的用例。 pytest 在执行用例时&#xff0c;如果…

Redis 7.x 系列【14】数据类型之流(Stream)

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Redis 版本 7.2.5 源码地址&#xff1a;https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 概述2. 常用命令2.1 XADD2.2 XRANGE2.3 XREVRANGE2.4 XDEL2.5 XLEN2.6 XREAD2.7 XG…

【.Net】Web项目部署腾讯云

文章目录 总述前置准备docker-compose部署普通部署 参考 总述 前置准备 云服务添加端口 另有linux本身防火墙请参考&#xff1a; 【Linux】防火墙命令 需安装.Net SDK和Asp .Net Runtime 注意&#xff1a; 1、sdk也要不只是runtime 2、是Asp .Net Runtime不是.Net Runtime …

国产音频放大器工作原理以及应用领域

音频放大器是在产生声音的输出元件上重建输入的音频信号的设备&#xff0c;其重建的信号音量和功率级都要理想&#xff1a;如实、有效且失真低。音频范围为约20Hz&#xff5e;20000Hz&#xff0c;因此放大器在此范围内必须有良好的频率响应&#xff08;驱动频带受限的扬声器时要…

BIOS设置与系统分区

&#x1f4d1;打牌 &#xff1a; da pai ge的个人主页 &#x1f324;️个人专栏 &#xff1a; da pai ge的博客专栏 ☁️宝剑锋从磨砺出&#xff0c;梅花香自苦寒来 目录 一BIOS 1破解密码的前提 2B…

Spring Cloud Gateway3.x自定义Spring Cloud Loadbalancer负载均衡策略以及实现动态负载均衡策略的方案

目录 前言 1.原理分析 1.1 ReactiveLoadBalancerClientFilter源码分析 1.2 LoadBalancerClientFactory源码分析 2.代码实现 2.1 扩展原生RoundRobinLoadBalancer轮询策略 2.1.1 自定义实现RoundRobinLoadBalancer 2.1.2 配置自定义的RoundRobinLoadBalan…

【web3】分享一个web入门学习平台-HackQuest

前言 一直想进入web3行业&#xff0c;但是没有什么途径&#xff0c;偶然在电鸭平台看到HackQuest的共学营&#xff0c;发现真的不错&#xff0c;并且还接触到了黑客松这种形式。 链接地址&#xff1a;HackQuest 平台功能 学习路径&#xff1a;平台有完整的学习路径&#xff…

金蝶云星空字段之间连续触发值更新

文章目录 金蝶云星空字段之间连续触发值更新场景说明具体需求&#xff1a;解决方案 金蝶云星空字段之间连续触发值更新 场景说明 字段A配置了字段B的计算公式&#xff0c;字段B配置了自动C的计算公式&#xff0c;修改A的时候&#xff0c;触发了B的重算&#xff0c;但是C触发不…

ABeam×StartUp | ABeam德硕中国新创部门拜访通用机器人初创公司 :逐际动力,就具身智能机器人的发展展开交流

近日&#xff0c;ABeam中国新创部门有幸拜访了深圳逐际动力科技有限公司&#xff08;以下简称&#xff1a;逐际动力&#xff09;。作为一家通用机器人公司&#xff0c;其在人形机器人、四轮足机器人等领域具有深厚的学术与技术储备。 现场合影 左&#xff1a;ABeam中国新创部门…

最快33天录用!一投就中的医学4区SCI,几乎不退稿~

【SciencePub学术】今天小编给大家推荐2本生物医学领域的SCI&#xff0c;此期刊为我处目前合作的重点期刊&#xff01;影响因子0-3.0之间&#xff0c;最重要的是审稿周期较短&#xff0c;对急投的学者较为友好&#xff01; 医学医药类SCI 01 / 期刊概况 【期刊简介】IF&…

多模态融合 + 慢病精准预测

多模态融合 慢病精准预测 慢病预测算法拆解子解法1&#xff1a;多模态数据集成子解法2&#xff1a;实时数据处理与更新子解法3&#xff1a;采用大型语言多模态模型&#xff08;LLMMs&#xff09;进行深度学习分析 慢病预测更多模态 论文&#xff1a;https://arxiv.org/pdf/2406…

高通骁龙(Qualcomm Snapdragon)CDSP HVX HTP 芯片简介与开发入门

1. Hexagon DSP/HVX/HTP 硬件演进 说到高通骁龙芯片大家应该不会陌生&#xff0c;其作为最为广泛的移动处理器之一&#xff0c;几乎每一个品牌的智能手机都会使用高通骁龙的处理器。 高通提供了一系列骁龙芯片解决方案。根据性能强弱分为了5个产品系列&#xff1a;从最高端的…

数据结构_1.0

一、数据结构概述 1.1 概念 在计算机科学中&#xff0c;数据结构是一种数据组织、管理和存储的格式 。它是相互之间存在一种或多种特定关系的数据元素的集合。通常情况下&#xff0c;精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技…