DP:解决路径问题

文章目录

  • 二维DP模型
  • 如何解决路径问题
  • 有关路径问题的几个问题
    • 1.不同路径
    • 2.不同路径Ⅱ
    • 3.下降路径最小和
    • 4.珠宝的最高价值
    • 5.地下城游戏
  • 总结

在这里插入图片描述

二维DP模型

二维动态规划(DP)模型是一种通过引入两个维度的状态和转移方程来解决复杂问题的技术。它在许多优化和组合问题中广泛应用,尤其是那些需要考虑二维数组或矩阵的情况。

以下是二维DP模型的核心概念和步骤:

  1. 状态定义:二维DP模型使用一个二维数组(或矩阵)来表示问题的状态。每个状态通常由两个变量(例如i和j)表示,表示在问题空间中的某个位置或状态。

  2. 状态转移方程:这是DP的核心。它描述了如何从一个状态转移到另一个状态,通常是通过递推关系来实现。转移方程基于问题的具体特性进行设计。

  3. 初始状态和边界条件:在DP表格中需要明确初始状态和边界条件。这些条件为DP表格的填充提供了起点。

  4. 目标状态:最后,我们通过目标状态来得到问题的最终解。通常是二维数组中的一个或几个特定位置。

如何解决路径问题

路径问题是动态规划中非常经典的一类问题,通常涉及从一个起点到一个终点的最短路径、最大路径或独特路径数等。解决路径问题的常用方法包括递归、回溯和动态规划(DP)。其中,动态规划由于其效率和易理解性,成为解决路径问题的常用技术。以下是解决路径问题的一些常见步骤和示例:

一般步骤

  1. 定义状态:确定DP数组的含义,通常是定义dp[i][j]表示从起点到位置(i, j)的某种路径属性(如路径和、路径数等)。

  2. 状态转移方程:建立递推关系,描述如何从一个状态转移到另一个状态。

  3. 初始化:根据问题的具体情况,设置DP数组的初始值。

  4. 计算DP数组:按照状态转移方程填充DP数组。

  5. 提取结果:通过DP数组得到最终结果。

有关路径问题的几个问题

1.不同路径

题目链接
题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

这道题是一个很典型的二维DP问题,也是二维DP中的路径问题的一种,这道题给定一个宽是m,长是n,让我们求在这个二位数组中从[0,0]点到[m-1,n-1]的方法有多少种。
在这里插入图片描述

算法原理:
算法原理也和传统的DP问题的步骤是一样的。
第一步:状态表示,先确定dp表是初始位置还是 末位置,很显然这道题要我们求的是方法有多少种,dp肯定是末位置,所以这里dp[i][j]到达[i,j]位置时有多少种方法。
第二步:状态转移方程,这道题dp表示的是到达某位置时的方法的种数,
在这里插入图片描述
很显然这道题题目要求只能向下或者向右移动,所以我们只有可能从[i,j]位置的上方或者[i,j]的左方到达[i,j]位置,所以我们需要求[i,j]位置的最多的方法数,只需要求出左边和上面的方法总数之和即可。
状态转移方程:dp[i][j]=dp[i-1][j]+dp[i][j-1]
第三步:初始化问题,这道题的当前数据需要用到左边的数据和上面的数据,所以这道题越界的地方应该是红色的地方:在这里插入图片描述
处理这种越界情况我们初始化只需要多开辟一行一列数组:
在这里插入图片描述
这样就不会出现越界的情况了,初始化应该把蓝色的部分全部初始化掉,具体初始哈为多少了,首先这相当于是一个虚拟的节点,为了防止越界而产生的,所以先初始化为0,但是如果初始化为零那么总的方法数就是零了,所以我们需要把[0,1]位置或者[1,0]位置初始化为1.
第四步:填表顺序,这道题很显然是从左上角开始 按顺序遍历。
第五步:返回值问题,这道题求的是到达左下角的方法总数,所以是返回dp[m][n]。

代码展示:

class Solution {
public:int uniquePaths(int m, int n) {//创建一个dp表,第一排和第一列表示虚拟节点vector<vector<int>> dp(m+1,vector<int>(n+1,0));//初始化[0,1]节点dp[0][1]=1;//填表for(int i=1;i<m+1;i++){for(int j=1;j<n+1;j++){//状态转移方程dp[i][j]=dp[i-1][j]+dp[i][j-1];}}//返回值return dp[m][n];}
};

运行结果:
在这里插入图片描述

2.不同路径Ⅱ

题目链接
题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

算法原理:
这道题和上一道题其实是一样的,只需要加一个判断,如果obstacleGrid数组中的值是1的话当前方法数就是0,所以在上道题的条件下加一个if条件的判断即可 。
代码展示:

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m=obstacleGrid.size();int n=obstacleGrid[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,0));dp[0][1]=1;for(int i=1;i<m+1;i++){for(int j=1;j<n+1;j++){if(obstacleGrid[i-1][j-1]==0){dp[i][j]=dp[i-1][j]+dp[i][j-1];}}}return dp[m][n];}
};

运行结果:
在这里插入图片描述

3.下降路径最小和

题目链接
题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

这道题的题意很简单,我们首先可以在一个n*n的矩阵的第一行 选三个数
在这里插入图片描述
当我们选中间的格子时,可以下降的格子,我们假设当前格子的下标是[i,j],则可以访问的下一行的下降的格子应该是:[i+1,j-1] [i+1,j] [i+1,j+1]这三个下标,这道题让 我们求的就是到达最后一行的时候下降的最小的路径和,每个方格中的值就表示当前格子的路径数,所以当到达最后一行的时候走过的路径和就是走过的所有格子的值的和。
算法原理:
第一步:状态表示,这道题根据问题我们就知道这道题求的是下降路径最小和,所以我们的dp[i][j]表示的是到达[i][j]位置的时候的当前最小和。
第二步:状态转移方程,我们假设一个格子的下标是[i,j]。
在这里插入图片描述

[i,j]的最小下降路径是不是应该等于上面三个的相邻的格子的最小路径加上当前格子的值。
所以状态转移方程应该是:dp[i][j]=min(dp[i-1][j],dp[i-1][j-1],dp[i-1][j+1])+matrix[i][j]
第三步:初始化为题,其实初始化还是和上面的一样,但是因为我们要用到上一行左边和右边的格子,所以这里会出现越界的格子不止左边和上面的格子还有右边的格子
在这里插入图片描述
所以我们开辟空间应该这样开辟:
在这里插入图片描述
初始化应该初始化蓝色格子,由于当我们请求[i,j-1]位置的最小路径和的时候最左边的一列会影响最小值的大小,,所以这里初始化不能初始化为零,应该初始化为正无穷(INT_MAX)右边的蓝色格子也 应该初始化为正无穷,但是上面一排的格子应该初始化为0,这样才不会影响结果。
第四步:填表顺序,填表 顺序按顺序遍历。
第五步 :返回值,由于这道题求的是最小路径和,所以应该返回dp数组中最后一行中的最小值。
代码展示:

class Solution {
public:int minFallingPathSum(vector<vector<int>>& matrix) {int m=matrix.size();int n=matrix[0].size();vector<vector<int>> dp(m+1,vector<int>(n+2,INT_MAX));for(int j=0;j<n+2;j++){dp[0][j]=0;}for(int i=1;i<m+1;i++){for(int j=1;j<n+1;j++){dp[i][j]=min(min(dp[i-1][j-1],dp[i-1][j]),dp[i-1][j+1])+matrix[i-1][j-1];}}int Min=INT_MAX;for(int j=0;j<n+2;j++){Min=min(Min,dp[m][j]);}return Min;}
};

运行结果:
在这里插入图片描述

4.珠宝的最高价值

题目链接
题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

这道题让我们求出珠宝的最高价值,
在这里插入图片描述
很显然根据示例一种的例子,价值最高的珠宝应该是这条路线之和,然后返回
算法原理:
状态表示:dp[i][j]当前位置的珠宝的最高价值。
状态转移方程:max(dp[i-1][j]+frame[i-1][j-1],dp[i][j-1]+frame[i-1][j-1])
初始化:初始化 应该初始化最左边和最上面,初始化为零,因为当前的礼物价值是0.
代码展示:

class Solution {
public:int jewelleryValue(vector<vector<int>>& frame) {int m=frame.size();int n=frame[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,0));for(int i=1;i<m+1;i++){for(int j=1;j<n+1;j++){dp[i][j]=max(dp[i-1][j]+frame[i-1][j-1],dp[i][j-1]+frame[i-1][j-1]);}}return dp[m][n];}
};

运行结果:
在这里插入图片描述

5.地下城游戏

题目链接
题目:

在这里插入图片描述

样例输出和输入:

在这里插入图片描述

这道题让我们求出就出公主需要的最小健康值,当我们找到最小的一个路径的和加上1就是需要的最小的健康值。
算法原理:
状态表示:dp[i][j]表示当前位置救出公主需要的最小的健康程度,所以这道题的dp[i][j]应该是起点,而不是终点。
状态转移方程:我们设当前位置的最小的健康程度是dp[i][j],则当我们用dp[i][j]-dungeon[i][j]>=dp[i+1][j],同理还有一种情况:dp[i][j]-dungeon[i][j]>=dp[i][j+1]所以最小的健康程度应该是求一个最小值,则状态转移方程:dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j],但是需要注意的是如果dungeon是一个很大的正值的时候,会出现负数,由于这道题的题目要求是最低的健康值是1,到0或者小于零就死了,所以这道题不能出现负数,所以应该和1取一下max。
初始化,初始化我们和以前不一样,应该:
在这里插入图片描述
应该初始化左下角,由于取的最小值,所以不能初始化为0,应该初始化为INT_MAX,但是公主下面的和右边的格子应该初始化为1,因为救完公主的最小健康值是1,所以应该初始化为1.
填表顺序:从右下角倒着填表
返回值:返回dp数组的第一个值。
代码展示:

class Solution {
public:int calculateMinimumHP(vector<vector<int>>& dungeon) {int m=dungeon.size();int n=dungeon[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));dp[m][n-1]=1;dp[m-1][n]=1;for(int i=m-1;i>=0;i--){for(int j=n-1;j>=0;j--){dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];dp[i][j]=max(dp[i][j],1);}}return dp[0][0];}
};

运行结果:
在这里插入图片描述

总结

在这篇博客中,我们详细探讨了动态规划(DP)在解决路径问题中的应用。我们首先回顾了动态规划的基本概念和其核心思想,即通过将问题分解为更小的子问题并存储其结果来避免重复计算。然后,我们通过多个经典的路径问题示例,如最短路径问题、最长路径问题和独特路径问题,展示了如何将动态规划技术应用于实际问题中。

通过这些示例,我们可以看到,动态规划不仅提高了算法的效率,还提供了一种系统化的思维方式,使我们能够更加清晰地理解和解决复杂的路径问题。掌握动态规划技巧,不仅有助于我们在学术研究中取得突破,还能在实际工程项目中大幅度提高解决问题的能力。

希望通过这篇博客,读者们能够更好地理解动态规划的基本原理和应用场景,并在未来的学习和工作中灵活运用这一强大的工具。感谢阅读,如果您有任何问题或建议,欢迎在评论区与我交流。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/367422.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用VMware创建Ubuntu 24.04【一】

系列文章目录 第二章 使用Ubuntu安装Frappe-Bench【二】 文章目录 系列文章目录前言相关链接下载地址虚拟机创建与运行初始化系统中配置 前言 VMware是一个虚拟化软件&#xff0c;它允许用户在一台计算机上模拟多个虚拟计算机环境。通过使用VMware&#xff0c;用户可以轻松地…

【Python】已解决:AttributeError: ‘function’ object has no attribute ‘ELement’

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决&#xff1a;AttributeError: ‘function’ object has no attribute ‘ELement’ 一、分析问题背景 在Python编程中&#xff0c;AttributeError通常表明你试图访问一个对象…

【Linux】生物信息学常用基本命令

wget网址用于直接从网上下载某个文件到服务器&#xff0c;当然也可以直接从网上先把东西下到本地然后用filezilla这个软件来传输到服务器上。 当遇到不会的命令时候&#xff0c;可以使用man “不会的命令”来查看这个命令的详细信息。比如我想要看看ls这个命令的详细用法&…

K8S 集群节点扩容

环境说明&#xff1a; 主机名IP地址CPU/内存角色K8S版本Docker版本k8s231192.168.99.2312C4Gmaster1.23.1720.10.24k8s232192.168.99.2322C4Gwoker1.23.1720.10.24k8s233&#xff08;需上线&#xff09;192.168.99.2332C4Gwoker1.23.1720.10.24 当现有集群中的节点资源不够用&…

FFmpeg教程-三-播放pcm文件-1

目录 一&#xff0c;下载SDL 二&#xff0c;在Qt中测试 1&#xff0c;在pro文件中加入路径 2&#xff0c;在.cpp文件中加入头文件 3&#xff0c;进行测试 4&#xff0c;显示结果 一&#xff0c;下载SDL 通过编程的方式播放音视频&#xff0c;也是需要用到这2个库: FFmpeg…

2本Top,4本纯正刊,25天即录!7月刊源表已更新!

本周投稿推荐 SCI • 能源技术类&#xff0c;1.5-2.0&#xff08;来稿即录25天&#xff09; • 计算机类&#xff0c;2.0-3.0&#xff08;纯正刊29天录用&#xff09; EI • 各领域沾边均可&#xff08;2天录用&#xff09; CNKI • 7天录用-检索&#xff08;急录友好&a…

Python处理异常用操作介绍

Python中的异常处理主要用于捕获和处理程序运行过程中出现的错误。 在编写Python程序时&#xff0c;我们经常会遇到各种错误&#xff0c;如语法错误、运行时错误等。为了确保程序的稳定性和健壮性&#xff0c;我们需要对可能出现的错误进行捕获和处理。本文将介绍Python中常用的…

【云原生监控】Prometheus 普罗米修斯从搭建到使用详解

目录 一、前言 二、服务监控概述 2.1 什么是微服务监控 2.2 微服务监控指标 2.3 微服务监控工具 三、Prometheus概述 3.1 Prometheus是什么 3.2 Prometheus 特点 3.3 Prometheus 架构图 3.3.1 Prometheus核心组件 3.3.2 Prometheus 工作流程 3.4 Prometheus 应用场景…

贪心算法——加工木棍(C++)

上大学&#xff0c;一天是一天&#xff0c;两天也是一天。 ——2024年6月27日 之前考试周断更了&#xff0c;今天重新开始&#xff01; 题目描述 有n根木棍&#xff0c;已知每根木棍的长度和重量。这些木棍在木工机器上加工&#xff0c;机器准备加工木棍需要一些时间&#xf…

GraalVM

文章目录 1、什么是GraalVM2、GraalVM的两种模式1_JIT模式2_AOT模式3_总结 3、应用场景1_SpringBoot搭建GraalVM应用2_函数计算3_Serverless应用 4、参数优化和故障诊断1_内存快照文件的获取2_运行时数据的获取 1、什么是GraalVM GraalVM是Oracle官方推出的一款高性能JDK&…

【HarmonyOS4学习笔记】《HarmonyOS4+NEXT星河版入门到企业级实战教程》课程学习笔记(十九)

课程地址&#xff1a; 黑马程序员HarmonyOS4NEXT星河版入门到企业级实战教程&#xff0c;一套精通鸿蒙应用开发 &#xff08;本篇笔记对应课程第 29 节&#xff09; P29《28.网络连接-第三方库axios》 要想使用第三方库axios&#xff0c;需要先安装ohpm&#xff0c;因为 axios…

认识String类

文章目录 String类字符串的遍历字符串的比较字符串的替换字符串的转换字符串的切割字符串的切片字符串的查找 总结 String类 在C语言中已经涉及到字符串了&#xff0c;但是在C语言中要表示字符串只能使用字符数组或者字符指针&#xff0c;可以使用标准库提 供的字符串系列函数完…

003-GeoGebra如何无缝嵌入到PPT里

GeoGebra无缝嵌入到PPT里真是一个头疼的问题&#xff0c;已成功解决&#xff0c;这里记录一下&#xff0c;希望可以帮助到更多人。 注意&#xff0c;后续所有的文章说的PPT都是Offce Power Point, 不要拿着WPS的bug来问我哦&#xff0c;我已经戒WPS了&#xff08;此处表示无奈&…

Mysql在Windows系统下安装以及配置

目录 一、下载Mysql 二、安装Mysql及环境配置 一、下载Mysql 1. 下载地址 官网:https://www.mysql.com&#xff0c;这里我选用的是Mysql8.0.37版本&#xff08;版本无所谓&#xff0c;随便下8.0.几都行&#xff09; 2.点击DOWNLOADS 然后&#xff0c;点击 MySQL Community…

YOLOv8目标检测在RK3588部署全过程

一&#xff0c;前言 这是一个关于从电脑安装深度学习环境到实现YOLOv8目标检测在RK3588上部署的全过程。 本人配置&#xff1a; 1&#xff0c;一台笔记本 2&#xff0c;一个香橙派5s 二&#xff0c;深度学习环境配置 2.1 安装anaconda 使用清华镜像源下载https://mirror…

如何借助物联网实现土壤监测与保护

如何借助物联网实现土壤监测与保护 高标准农田信息化是指利用现代信息技术&#xff0c;如物联网、大数据、云计算等&#xff0c;对农田进行数字化、智能化的管理&#xff0c;以提高农田的生产效率和可持续发展能力。其中&#xff0c;土壤监测与保护是农田信息化的重要内容之一…

力扣404周赛 T1/T2/T3 枚举/动态规划/数组/模拟

博客主页&#xff1a;誓则盟约系列专栏&#xff1a;IT竞赛 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 3200.三角形的最大高度【简单】 题目&#xff1a; 给你两个整数 red 和 b…

UE4_材质_水体的反射与折射制作_Ben教程

在这个教程中&#xff0c;将制作水的反射和折射&#xff0c;上个教程&#xff0c;我们主要讲了制作水涟漪&#xff08;水面波纹&#xff09;和水滴法线混合&#xff0c;水深计算&#xff0c;我们首先要谈的是反射和产生折射的问题。我们将所有从干扰从场景中分离出去&#xff0…

手机微信聊天记录删除了怎么恢复?揭秘3个技巧

在现代社交生活中&#xff0c;微信已经成为我们沟通和交流的重要工具。然而&#xff0c;不小心删除重要的微信聊天记录是很多人都会遇到的问题。这些被误删的记录可能包含了工作中的重要信息、与亲友的珍贵对话&#xff0c;甚至是重要的证据材料。 那么&#xff0c;当数据被删…

【ARM】MCU和SOC的区别

【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 了解SOC芯片和MCU芯片的区别 2、 问题场景 用于了解SOC芯片和MCU芯片的区别&#xff0c;内部结构上的区别。 3、软硬件环境 1&#xff09;、软件版本&#xff1a;无 2&#xff09;、电脑环境&#xff1a;无 3&am…