python成语填空的实验报告怎么写[实习报告]

大家好,小编来为大家解答以下问题python成语填空的实验报告怎么写,一个有趣的事情,一个有趣的事情,现在让我们一起来看看吧!

1、实习报告结束语怎么写!

实习报告结束语写作思路:与开头一样,文章的结尾也是相当重要的。成功的结尾,能使读者更深入、更透彻地理解文章内容,进一步领会文章的中心思想;精彩的结尾,能唤起读者的思考与共鸣,增强文章的感染力,结尾当如撞钟。

实习报告结束语的示例:

1、在公司里实习的这段时间里,我真正体会到了团队的力量。刚得到公司通知说我面试通过,真的很开心。在没进公司的时候,有很多的憧憬。希望自己可以大干一场,当时感觉自己有太多可发现的潜力可以挖掘,就等着有那么一个人可以发现自己这么一块金子。

进去之后才发现其实自己是那么的渺小,千万不要自以为是,比你好的多的多,你没有什么了不起的。做人一定要塌实。没有同事们一起的努力,就单靠自己一个人的力量肯定是做不好事情。特别是在销售部这样一个部门,更加需要大家的一起努力。

实习是每一个大学毕业生必须拥有的一段经历,他使我们在实践中了解社会,让我们学到了很多在课堂上根本就学不到的东西,为我们以后进一步走向社会打下坚实的基础,实习是我们把学到的理论知识应用在实践中的一次尝试。

2、我在实习的过程中,既有收获的喜悦,也有一些遗憾。也许是实习日子短和我并非的关系,对文秘有些工作的认识仅仅停留在表面,只是在看人做,听人讲如何做,未能够亲身感受、具体处理一些工作,所以未能领会其精髓。

但时通过实习,加深了我对文秘基本知识的理解,丰富了我的实际管理知识,使我对日常文秘管理工作有了一定的感性和理性认识。认识到要做好日常企业文秘管理工作,既要注重管理理论知识的学习,更重要的是要把实践与理论两者紧密相结合。

通过在职的一个多月里,我深感自己的不足,我会在以后的工作学习中更加努力,取长补短,需心求教。

3、我是学管理的,在书本上学过很多套经典管理理论,似乎通俗易懂,但从未付诸实践过,也许等到真正管理一个公司时,才会体会到难度有多大;

我们在老师那里或书本上看到过很多精彩的谈判案例,似乎轻而易举,也许亲临其境或亲自上阵才能意识到自己能力的欠缺和知识的匮乏。

实习这两个月期间,增长了见识,体验到社会竞争的残酷,而更多的是希望自己在工作中积累各方面的经验,为将来自己走创业之路做准备。

2、python成语填空的实验报告怎么写

#python成语填空的实验报告有关代码:
from random import (choice,randint);
while 1:
stringa="掩耳盗铃@揠苗助长@一叶障目@滥竽充数@指鹿为马@亡羊补牢@夜郎自大@暗渡成仓"#此行首缩进4格;
lista=stringa.split("@")#此行首缩进4格;
listb=choice(lista)#此行首缩进4格;
listc=[j for j in listb]#此行首缩进4格;
space_letter=choice(listc)#此行首缩进4格;
select_letters=listb.replace(space_letter,"()")#此行首缩进4格;
print(select_letters)#此行首缩进4格;
insert_letter=input("填:")#此行首缩进4格;
result=(True if insert_letter==space_letter else False)#此行首缩进4格;
print(f'Your anser:{result}')#此行首缩进4格;
if result:#此行首缩进4格;
break#此行首缩进8格;

'''
揠苗助()
填:目
Your anser:False
夜()自大
填:郎
Your anser:True
'''

3、python数据分析与应用-Python数据分析与应用 PDF 内部全资料版

给大家带来的一篇关于Python数据相关的电子书资源,介绍了关于Python方面的内容,本书是由人民邮电出版社出版,格式为PDF,资源大小281 MB,黄红梅 张良均编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:7.8。

内容介绍

目录

第1章 Python数据分析概述 1

任务1.1 认识数据分析 1

1.1.1 掌握数据分析的概念 2

1.1.2 掌握数据分析的流程 2

1.1.3 了解数据分析应用场景 4

任务1.2 熟悉Python数据分析的工具 5

1.2.1 了解数据分析常用工具 6

1.2.2 了解Python数据分析的优势 7

1.2.3 了解Python数据分析常用类库 7

任务1.3 安装Python的Anaconda发行版 9

1.3.1 了解Python的Anaconda发行版 9

1.3.2 在Windows系统中安装Anaconda 9

1.3.3 在Linux系统中安装Anaconda 12

任务1.4 掌握Jupyter Notebook常用功能 14

1.4.1 掌握Jupyter Notebook的基本功能 14

1.4.2 掌握Jupyter Notebook的高 级功能 16

小结 19

课后习题 19

第2章 NumPy数值计算基础 21

任务2.1 掌握NumPy数组对象ndarray 21

2.1.1 创建数组对象 21

2.1.2 生成随机数 27

2.1.3 通过索引访问数组 29

2.1.4 变换数组的形态 31

任务2.2 掌握NumPy矩阵与通用函数 34

2.2.1 创建NumPy矩阵 34

2.2.2 掌握ufunc函数 37

任务2.3 利用NumPy进行统计分析 41

2.3.1 读/写文件 41

2.3.2 使用函数进行简单的统计分析 44

2.3.3 任务实现 48

小结 50

实训 50

实训1 创建数组并进行运算 50

实训2 创建一个国际象棋的棋盘 50

课后习题 51

第3章 Matplotlib数据可视化基础 52

任务3.1 掌握绘图基础语法与常用参数 52

3.1.1 掌握pyplot基础语法 53

3.1.2 设置pyplot的动态rc参数 56

任务3.2 分析特征间的关系 59

3.2.1 绘制散点图 59

3.2.2 绘制折线图 62

3.2.3 任务实现 65

任务3.3 分析特征内部数据分布与分散状况 68

3.3.1 绘制直方图 68

3.3.2 绘制饼图 70

3.3.3 绘制箱线图 71

3.3.4 任务实现 73

小结 77

实训 78

实训1 分析1996 2015年人口数据特征间的关系 78

实训2 分析1996 2015年人口数据各个特征的分布与分散状况 78

课后习题 79

第4章 pandas统计分析基础 80

任务4.1 读/写不同数据源的数据 80

4.1.1 读/写数据库数据 80

4.1.2 读/写文本文件 83

4.1.3 读/写Excel文件 87

4.1.4 任务实现 88

任务4.2 掌握DataFrame的常用操作 89

4.2.1 查看DataFrame的常用属性 89

4.2.2 查改增删DataFrame数据 91

4.2.3 描述分析DataFrame数据 101

4.2.4 任务实现 104

任务4.3 转换与处理时间序列数据 107

4.3.1 转换字符串时间为标准时间 107

4.3.2 提取时间序列数据信息 109

4.3.3 加减时间数据 110

4.3.4 任务实现 111

任务4.4 使用分组聚合进行组内计算 113

4.4.1 使用groupby方法拆分数据 114

4.4.2 使用agg方法聚合数据 116

4.4.3 使用apply方法聚合数据 119

4.4.4 使用transform方法聚合数据 121

4.4.5 任务实现 121

任务4.5 创建透视表与交叉表 123

4.5.1 使用pivot_table函数创建透视表 123

4.5.2 使用crosstab函数创建交叉表 127

4.5.3 任务实现 128

小结 130

实训 130

实训1 读取并查看P2P网络贷款数据主表的基本信息 130

实训2 提取用户信息更新表和登录信息表的时间信息 130

实训3 使用分组聚合方法进一步分析用户信息更新表和登录信息表 131

实训4 对用户信息更新表和登录信息表进行长宽表转换 131

课后习题 131

第5章 使用pandas进行数据预处理 133

任务5.1 合并数据 133

5.1.1 堆叠合并数据 133

5.1.2 主键合并数据 136

5.1.3 重叠合并数据 139

5.1.4 任务实现 140

任务5.2 清洗数据 141

5.2.1 检测与处理重复值 141

5.2.2 检测与处理缺失值 146

5.2.3 检测与处理异常值 149

5.2.4 任务实现 152

任务5.3 标准化数据 154

5.3.1 离差标准化数据 154

5.3.2 标准差标准化数据 155

5.3.3 小数定标标准化数据 156

5.3.4 任务实现 157

任务5.4 转换数据 158

5.4.1 哑变量处理类别型数据 158

5.4.2 离散化连续型数据 160

5.4.3 任务实现 162

小结 163

实训 164

实训1 插补用户用电量数据缺失值 164

实训2 合并线损、用电量趋势与线路告警数据 164

实训3 标准化建模专家样本数据 164

课后习题 165

第6章 使用scikit-learn构建模型 167

任务6.1 使用sklearn转换器处理数据 167

6.1.1 加载datasets模块中的数据集 167

6.1.2 将数据集划分为训练集和测试集 170

6.1.3 使用sklearn转换器进行数据预处理与降维 172

6.1.4 任务实现 174

任务6.2 构建并评价聚类模型 176

6.2.1 使用sklearn估计器构建聚类模型 176

6.2.2 评价聚类模型 179

6.2.3 任务实现 182

任务6.3 构建并评价分类模型 183

6.3.1 使用sklearn估计器构建分类模型 183

6.3.2 评价分类模型 186

6.3.3 任务实现 188

任务6.4 构建并评价回归模型 190

6.4.1 使用sklearn估计器构建线性回归模型 190

6.4.2 评价回归模型 193

6.4.3 任务实现 194

小结 196

实训 196

实训1 使用sklearn处理wine和wine_quality数据集 196

实训2 构建基于wine数据集的K-Means聚类模型 196

实训3 构建基于wine数据集的SVM分类模型 197

实训4 构建基于wine_quality数据集的回归模型 197

课后习题 198

第7章 航空公司客户价值分析 199

任务7.1 了解航空公司现状与客户价值分析 199

7.1.1 了解航空公司现状 200

7.1.2 认识客户价值分析 201

7.1.3 熟悉航空客户价值分析的步骤与流程 201

任务7.2 预处理航空客户数据 202

7.2.1 处理数据缺失值与异常值 202

7.2.2 构建航空客户价值分析关键特征 202

7.2.3 标准化LRFMC模型的5个特征 206

7.2.4 任务实现 207

任务7.3 使用K-Means算法进行客户分群 209

7.3.1 了解K-Means聚类算法 209

7.3.2 分析聚类结果 210

7.3.3 模型应用 213

7.3.4 任务实现 214

小结 215

实训 215

实训1 处理信用卡数据异常值 215

实训2 构造信用卡客户风险评价关键特征 217

实训3 构建K-Means聚类模型 218

课后习题 218

第8章 财政收入预测分析 220

任务8.1 了解财政收入预测的背景与方法 220

8.1.1 分析财政收入预测背景 220

8.1.2 了解财政收入预测的方法 222

8.1.3 熟悉财政收入预测的步骤与流程 223

任务8.2 分析财政收入数据特征的相关性 223

8.2.1 了解相关性分析 223

8.2.2 分析计算结果 224

8.2.3 任务实现 225

任务8.3 使用Lasso回归选取财政收入预测的关键特征 225

8.3.1 了解Lasso回归方法 226

8.3.2 分析Lasso回归结果 227

8.3.3 任务实现 227

任务8.4 使用灰色预测和SVR构建财政收入预测模型 228

8.4.1 了解灰色预测算法 228

8.4.2 了解SVR算法 229

8.4.3 分析预测结果 232

8.4.4 任务实现 234

小结 236

实训 236

实训1 求取企业所得税各特征间的相关系数 236

实训2 选取企业所得税预测关键特征 237

实训3 构建企业所得税预测模型 237

课后习题 237

第9章 家用热水器用户行为分析与事件识别 239

任务9.1 了解家用热水器用户行为分析的背景与步骤 239

9.1.1 分析家用热水器行业现状 240

9.1.2 了解热水器采集数据基本情况 240

9.1.3 熟悉家用热水器用户行为分析的步骤与流程 241

任务9.2 预处理热水器用户用水数据 242

9.2.1 删除冗余特征 242

9.2.2 划分用水事件 243

9.2.3 确定单次用水事件时长阈值 244

9.2.4 任务实现 246

任务9.3 构建用水行为特征并筛选用水事件 247

9.3.1 构建用水时长与频率特征 248

9.3.2 构建用水量与波动特征 249

9.3.3 筛选候选洗浴事件 250

9.3.4 任务实现 251

任务9.4 构建行为事件分析的BP神经网络模型 255

9.4.1 了解BP神经网络算法原理 255

9.4.2 构建模型 259

9.4.3 评估模型 260

9.4.4 任务实现 260

小结 263

实训 263

实训1 清洗运营商客户数据 263

实训2 筛选客户运营商数据 264

实训3 构建神经网络预测模型 265

课后习题 265

附录A 267

附录B 270

参考文献 295

学习笔记

Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。 定义 (推荐学习:Python视频教程) 用户可以通过电子邮件,Dropbox,GitHub 和 Jupyter Notebook Viewer,将 Jupyter Notebook 分享给其他人。 在Jupyter Notebook 中,代码可以实时的生成图像,视频,LaTeX和JavaScript。 使用 数据挖掘领域中最热门的比赛 Kaggle 里的资料都是Jupyter 格式 。 架构 Jupyter组件 Jupyter包含以下组件: Jupyter Notebook 和 ……

本文实例讲述了Python实现的微信好友数据分析功能。分享给大家供大家参考,具体如下: 这里主要利用python对个人微信好友进行分析并把结果输出到一个html文档当中,主要用到的python包为 itchat , pandas , pyecharts 等 1、安装itchat 微信的python sdk,用来获取个人好友关系。获取的代码 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……

基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。 效果: 直接上代码,建三个空文本文件stopwords.txt,newdit.txt、unionWords.txt,下载字体simhei.ttf或删除字体要求的代码,就可以直接运行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#绘图时可以显示中文plt.rcParams['axes.unicode_minus']=False#绘图时可以显示中文import jiebaimport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解决编码问题non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #获取好友信息def getFriends():……

Python数据分析之双色球基于线性回归算法预测下期中奖结果示例

本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果。分享给大家供大家参考,具体如下: 前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊。 代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。 发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#导入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#读取文件d……

以上就是本次介绍的Python数据电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对鬼鬼的支持。

4、Python可以实训的项目简单点的有哪些

第一阶段:Python语言及应用
课程内容:Python语言基础,面向对象设计,多线程编程,数据库交互技术,前端特效,Web框架,爬虫框架,网络编程
第二阶段:机器学习与数据分析
课程内容:机器学习概述,监督学习,非监督学习,数据处理,模型调优,数据分析,可视化,项目实战
第三阶段:深度学习
课程内容:深度学习概述,TensorFlow基础及应用,神经网络,多层LSTM,自动编码器,生成对抗网络,小样本学习技术,项目实战
第四阶段:图像处理技术
课程内容:图像基础知识,图像操作及运算,图像几何变换,图像形态学,图像轮廓,图像统计学,图像滤波,项目实战

5、python金融分析的实验目的和要求

python金融分析的实验目的和要求:Python适合做数据分析,有很多成熟的数据分析框架:Pandas,Numpy等,这些在课程中都有教。这些框架都可以很方便的完成数据分析的任务。

对象在python里,其实是一个指针,指向一个数据结构,数据结构里有属性,有方法。 对象通常就是指变量。从面向对象OO的概念来讲,对象是类的一个实例。在python里很简单,对象就是变量。 class A: myname="class a" 上面就是一个类。

速度快:

Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。 免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/36762.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在HR眼里,IE证书早就不值钱了

大家好,我是老杨。 最近项目实在是忙,内容都写的少了一些,真的是有点力不从心的意思,人年纪大了,比不起当初年轻的自己了 和同事领导在一块儿的时间越多,就免不了聊到今年的就业环境。 我不提&#xff0…

软件工程3.0前传:AI赋能软件研发

今年是软件工程3.0的元年,软件工程3.0宣言也已发布,其软件新范式是ML-DevOps(机器学习驱动研发和运维),更准确地说是LLM-DevOps:大模型驱动开发、大模型驱动运维,但是ML模型包含了大模型&#x…

点燃通用人工智能的火花: GPT-4的早期实验

来源:Mindverse Research 今天介绍的这篇文章提供了对 GPT-4 早期版本的研究报告。作者认为,GPT-4 比 ChatGPT 以及其他相关 LLMs 表现出更多的通用智能。作者发现,除了对语言的掌握,GPT-4 还可以解决横跨数学、编码、视觉、医学、…

激发数学思维:GPT-4实证研究探索挑战性数学问题

深度学习自然语言处理 原创作者:wkk 考虑到自然语言在许多科学和工程领域表达的数学问题的丰富性,使用大语言模型(LLM)来解决数学问题是一项有趣的研究工作。今天给大家介绍一篇微软研究院联合欧美高校关于如何使用GPT-4解决数学问题的研究论文。 之前…

深度学习实战4-卷积神经网络(DenseNet)数学图形识别+题目模式识别

文章目录 一、前期工作 导入库数据集加载 二、构建CNN模型 三、训练过程曲线函数 四、训练模型函数 五、训练模型与结果 六、验证 大家好,今天给大家带来一个卷积神经网络(CNN)数学图形识别项目(简单入门版),这个是人工智能解题…

足球比赛分析小软件

1.支持固定格式比赛结果读取 2.支持简单查询 资源地址: http://download.csdn.net/detail/newbie724/4213958 下面是说明文档: Foot 使用方法 1.在File Location处输入样例文件的地址,注意要包含扩展名txt,现在只支持打开…

五个了解自己天赋优势的分析工具(二)盖洛普优势测评

盖洛普优势测评 盖洛普优势识别器(也叫克利夫顿优势评估),是盖洛普公司旗下⼀款王牌产品,是⼀个专⻔⽤来识别⼀个⼈隐形天赋、潜在优势、驱动⼒来源的⼯具,它可以帮助⼀个⼈科学认识⾃⼰。 它把⼈的思维⽅式、感受形…

我们研究了853场世界杯比赛,发现了这几条稳赔不赚的竞猜攻略

本文转载自大数据(ID:hzdashuju) 导读:世界杯开赛以来,据数据叔不完全统计,身边有66.6%的小伙伴上了天台,其中22.2%的人买了阿根廷赢、22.2%的人买了德国赢,还有22.2%的人买了巴西赢。剩下那33.…

再谈大数据之足球盘口赔率水位分析的思路与神准预测技巧

这两天看到CSDN上一篇同行写的有趣的话题,题目为: 浅谈大数据之足球盘口赔率水位分析的思路与神准预测技巧(一)_linwei_hello的专栏-CSDN博客 因为算是同行文章,本人也做足球大数据分析,手头上有全面的足…

PTA 2004年谷歌招聘题

题目 2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 …

文心一言 VS chatgpt (11)-- 算法导论2.3 7题 3.1 4~5题

四、2 ^ (n1)O(2 ^ n)成立吗? 2^(2n)O(2 ^ n)成立吗? 文心一言: chatgpt: 第一个式子不成立,第二个式子成立。 2 ^ (n1) O(2 ^ n) 该式不成立。按照大O符号的定义,如果存在正常数c和n0,使得n>n0时&#xf…

不作诗,只做事!国内首次,华为盘古大模型登Nature正刊!

来源:机器之心 千呼万唤始出来,华为的多模态千亿级大模型 「盘古」3.0 版来了。 自去年底以来,ChatGPT 的技术突破引爆了 AI 军备竞赛,国内外科技公司和机构接连发布了上百个大语言模型。 而在其中,有个玩家「没有出手…

调用阿里云语音转文本

文章目录 一、accessKeyId和accessKeySecret申请二、appKey申请三、调用接口代码 一、accessKeyId和accessKeySecret申请 二、appKey申请 创建项目既有 三、调用接口代码 安装包 pip install aliyun-python-sdk-core2.13.3# -*- coding: utf8 -*- import json import time…

文本生成视频Make-A-Video,根据一句话就能一键生成视频 Meta新AI模型

Meta公司(原Facebook)在今年9月29日首次推出一款人工智能系统模型:Make-A-Video,可以从给定的文字提示生成短视频。 Make-A-Video研究基于文本到图像生成技术的最新进展,该技术旨在实现文本到视频的生成,可…

ChatGPT加剧恐慌?4成AIoT开发者认为AI会产生意识 | 中国AIoT开发者报告正式发布...

作者 | 杨阳 出品 | CSDN(ID:CSDNnews) 据国际数据公司IDC预测,到2025年,全球IoT连接的设备数量将达到519亿,其中中国将达到80亿。尽管相较之前,近两年IoT的讨论热度有所消减,但并没…

图灵聊天机器人小程序

历时半年整理出了十多万字的学习笔记,目前依旧在更新 欢迎点赞和支持~🥳🥳🥳 博客 项目描述: 根据图灵API向聊天机器人发送聊天信息,并渲染返回的数据。具有清空聊天记录的按钮。本来是想上线…

15大不同领域问答对比,ChatGPT模型大战:国产版百度文心一言、昆仑万维天工能否击败GPT-4(含百度文心一言、昆仑万维天工个人内测体验测试邀请码获取方法,亲测有效)

目录 前言百度内测申请天工内测申请申请方式内测体验登录界面运行体验 内测对比基本问答事实性问答科普文写作小红书文案项目计划撰写古文理解模型的常识能力和反事实推理代码理解法律相关广告话术数字排序数值计算推理解题跨语言能力文生图 总结其它资料下载 前言 3月16日&am…

中国人工智能框架市场调研报告

随着众多人工智能项目从科研创新到产业落地,人工智能应用场景逐渐扩展,人工智能市场规模正在不断扩大。预训练大模型、“AI for Science”、“负责任的人工智能”等已成为全球学术界和产业界关注的焦点。而人工智能框架是模型算法开发的核心,是支撑人工智能技术发展和产业繁荣发…

C语言实现课程表

#include<stdio.h> #include<stdlib.h> #include<string.h> #include<time.h> #include<windows.h> #include<mmsystem.h> #pragma comment(lib,"WINMM.LIB")char course[99][99][99];void menu() //菜单显示 {printf("***…