【Python机器学习】模型评估与改进——带交叉验证的网格搜索

虽然将数据划分为训练集、验证集、测试集的方法是可行的,也相对常用,但这种方法对数据的划分相当敏感,为了得到对泛化性能的更好估计,我们可以使用交叉验证来评估每种参数组合的性能,而不是仅将数据单次划分为训练集与验证集。代码表示如下:

from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
import numpy as npiris=load_iris()X_trainval,X_test,y_trainval,y_test=train_test_split(iris.data,iris.target,random_state=0)
X_train,X_valid,y_train,y_valid=train_test_split(X_trainval,y_trainval,random_state=1)print('训练集大小:{} 开发集大小:{} 测试集大小:{}'.format(X_train.shape[0],X_valid.shape[0],X_test.shape[0]))best_score=0for gamma in [0.001,0.01,0.1,1,10,100]:for C in [0.001,0.01,0.1,1,10,100]:#对每种参数组合都训练一个SVCsvm=SVC(gamma=gamma,C=C)#交叉验证scores=cross_val_score(svm,X_trainval,y_trainval,cv=5)score=np.mean(scores)if score>best_score:best_score=scorebest_parameters={'C':C,'gamma':gamma}svm=SVC(**best_parameters)
svm.fit(X_trainval,y_trainval)

要想使用5折交叉验证对C和gamma特定取值的SVM的精度进行评估,需要训练36*5=180个模型,可以想象,使用交叉验证的主要缺点就是训练所有的这些模型所需花费的时间。

下面的可视化说明了上述代码如何选择最佳参数设置:

对于每种参数设置,需要计算5个精度值,交叉验证的每次划分都要计算一个精度值,然后,对每种参数设置计算平均验证精度,最后,选择平均验证精度最高的参数,用圆圈标记。

划分数据,运行网格搜索并评估最终参数的过程:

由于带交叉验证的网格搜索是一种常用的调参方法,因此scikit-learn提供了GridSearchCV类,它以估计器的形式实现了这种方法。要使用GridSearchCV类,我们首先要用一个字典指定要搜索的参数。然后GridSearchCV会执行所有必要的模型拟合。字典的键是我们想要尝试的参数设置。如果C和gamma想要的取值是0.001、0.01、0.1、1、10、100,可以将其转化为下面这个字典:

param_grid={'C':[0.001,0.01,0.1,1,10,100],'gamma':[0.001,0.01,0.1,1,10,100]}
print('Parameter grid:\n{}'.format(param_grid))

现在我们可以使用模型(SVC)、要搜索的参数网格(param_grid)与要使用的交叉验证策略将GridSearchCV类实例化:

from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
grid_search=GridSearchCV(SVC(),param_grid,cv=5)

GridSearchCV将使用交叉验证来代替之前用过的划分训练集和验证集方法。但是,我们仍需要将数据还分为训练集和测试集,以避免过拟合:

X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,random_state=0)

我们创建的grid_search对象的行为就像是一个分类器,我们可以对它调用标准的fit、predict、score方法。但我们在调用fit时,它会对param_grid指定的每种参数组合都进行交叉验证:

grid_search.fit(X_train,y_train)

拟合GridSearchCV对象不仅会搜索最佳参数,还会利用得到最佳交叉验证性能的参数在整个训练集上自动拟合一个新模型。因此,fit完成的工作相当于本篇第一段代码的效果。GridSearchCV类提供了一个非常方便的接口,可以用predict和score方法来访问重新训练过的模型。

为了评估找到的最佳参数的泛化能力,我们可以在测试集上调用score:

score=grid_search.score(X_test,y_test)
print('测试集score:{:.2f}'.format(score))

利用交叉验证选择参数,我们实际上找到了一个在测试集上精度为97%的模型。重要的是,我们没有使用测试集来选择参数。我们找到的参数保存在best_params_属性中,而交叉验证最佳精度(对于这种参数设置,不同划分的平均精度)保存在best_score_中:

print('最佳参数:{}'.format(grid_search.best_params_))
print('最佳精度:{}'.format(grid_search.best_score_))

能够访问实际找到的模型,这有时是很有帮助的,比如查看系数或特征重要性。可以用best_estimator_属性来访问最佳参数对应的模型,它是在整个训练集上训练得到的:

print('最佳参数对应的模型:{}'.format(grid_search.best_estimator_))

由于grid_search本身具有predict和score方法,所以不需要使用best_estimator_来进行预测或评估模型。

1、分析交叉验证的结果

将交叉验证的结果可视化通常有助于理解模型泛化能力对所搜索参数的依赖关系。由于运行网格搜索的计算成本相当高,所以通常最高从相对比较稀疏且较小的网格开始搜索。然后我们可以检查交叉验证网格搜索的结果,可能也会扩展搜索范围。网格搜索的结果可以在cv_results_属性中找到,它是一个字典,其中保存了搜索的所有内容。你可以在下面的输出中看到,它包含许多细节,最好将其转换成pandas数据框后再查看:

results=pd.DataFrame(grid_search.cv_results_)
display(results.head())

results中每一行对应一种特定的参数设置。对于每种参数设置,交叉验证所有划分的结果都被记录下来,所有划分的平均值和标准差也被记录下来。由于我们搜索的是一个二维参数网格,所以最适合用热图可视化。我们首先提取平均验证分数,然后改变分数数组的形状,使其坐标轴分别对应C和gamma:

scores=np.array(results.mean_test_score).reshape(6,6)
mglearn.tools.heatmap(scores,xlabel='gamma',xticklabels=param_grid['gamma'],ylabel='C',yticklabels=param_grid['C'],cmap='viridis')
plt.show()

热图中的每个点对应于运行一次交叉验证以及一种特定的参数设置。颜色表示交叉验证的精度:浅色表示高精度,深色表示低精度。可以看到,SVC对参数设置非常敏感。对于许多种参数设置,精度都在40%左右,这是非常糟糕的:对于其他参数设置,精度约为96%。

我们可以从图中看出:

1、我们调节的参数对于获得良好的性能非常重要;这两个参数(C和gamma)都很重要,因为调节它们可以将精度从40%提高到96%

2、在我们选择的参数范围中也可以看到输出发生了显著的变化。

同样重要的是要注意,参数的范围要足够大,每个参数的最佳取值不能位于图像的边界上。

下面的例子,结果就不那么理想,因为选择的搜索范围不合适:

import mglearn.plots
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVCiris=load_iris()
X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,random_state=0)fig,axes=plt.subplots(1,3,figsize=(13,5))
param_grid_linear={'C':np.linspace(1,2,6),'gamma':np.linspace(1,2,6)}
param_grid_one_log={'C':np.linspace(1,2,6),'gamma':np.logspace(-3,2,6)}
param_grid_range={'C':np.logspace(-3,2,6),'gamma':np.logspace(-7,-2,6)}
for param_grid,ax in zip([param_grid_linear,param_grid_one_log,param_grid_range],axes):grid_search=GridSearchCV(SVC(),param_grid,cv=5)grid_search.fit(X_train,y_train)scores=grid_search.cv_results_['mean_test_score'].reshape(6,6)scores_image=mglearn.tools.heatmap(scores,xlabel='gamma',xticklabels=param_grid['gamma'],ylabel='C',yticklabels=param_grid['C'],cmap='viridis',ax=ax)plt.colorbar(scores_image,ax=axes.tolist())
plt.show()

第一张图没有显示任何变化,整个参数网格的颜色相同,在这种情况下,这是由参数C和gamma不正确的缩放以及不正确的范围造成的。但如果对于不同的参数设置都看不到精度的变化,也可能是因为这个参数根本不重要。通常最好是开始时尝试非常极端的值,以观察改变参数是否会导致精度发生变化。

第二张图显示的是垂直条形模式。这表示只有gamma的设置对精度有影响。这可能意味着gamma参数搜索的范围是我们所关心的,而C参数并不是,也可能意味着C参数并不重要。

第三张图中C和gamma对应的精度都有变化。但可以看到,在图像的整个左下角都没有发生什么有趣的事情。我们在后面的网格搜索中可以不考虑非常小的值。最佳参数设置出现在右上角。由于最佳参数位于图像的边界,所以我们可以认为,在这个边界之外可能还有更好的取值,我们肯呢个希望改变搜索范围以包含这一区域内的更多参数。

基于交叉验证分数来调节参数网格是非常好的,也是搜索不同参数的重要性的好方法。但是,我们不应该在最终测试集上测试不同的参数范围,只有确切知道了想要使用的模型,才能对测试集进行评估。

2、在非网格的空间中搜索

在某些情况下,尝试所有参数的可能组合(正如GridSearchCV所做的那样)并不是一个好主意。例如SVC有一个kernel参数,根据所选的kernel(内核),其他参数也是与之相关的。如果kernel='linear',那么模型是线性的,只会用到C参数。如果kernel='rbf',则需要使用C和gamma两个参数,但用不到类似degree的其他参数。在这种情况下,搜索C、gamma和kernel所有可能的组合则没有意义:如果kernel='linear',那么gamma是用不到的,尝试gamma的不同取值将会浪费时间。

为了处理这种“条件”参数,GridSearchCV的param_grid可以是字典组成的列表。列表中的每个字典可扩展为一个独立的网络。包含内核与参数的网格搜索如下所示:

param_grid=[{'kernel':['rbf'],'C':[0.001,0.01,0.1,1,10,100],'gamma':[0.001,0.01,0.1,1,10,100]},{'kernel':['linear'],'C':[0.001,0.01,0.1,1,10,100]}]
print('grid列表:\n{}'.format(param_grid))

在第一个网络中,kernel参数始终等于'rbf',而C和gamma都是变化的。在第二个网格中,kernel参数始终等于'linear',只有C是变化的。

下面应用这个更加复杂的参数:

grid_search=GridSearchCV(SVC(),param_grid,cv=5)
grid_search.fit(X_train,y_train)
print('最佳参数:{}'.format(grid_search.best_params_))
print('最佳精度:{}'.format(grid_search.best_score_))

再次查看cv_results_,正如所料,如果kernel='linear',那么只有C是变化的:

results=pd.DataFrame(grid_search.cv_results_)
print(results.T)

3、使用不同的交叉验证策略进行网格搜索

与cross_val_score类似,GridSearchCV对分类问题默认使用分层k折交叉验证,对回归问题默认使用k折交叉验证。但是,我们可以传入任何交叉验证分离器作为GridSearchCV的cv参数。特别的,如果只想将数据单次划分为训练集和验证集,可以使用ShuffleSplit或StratifiedShuuleSplit,并设置n_iter=1.折对于非常大的数据集或非常慢的模型可能会有帮助。

1、嵌套交叉验证

在前面的例子中,我们将数据单次划分为训练集、验证集、测试集,然后先将数据划分为训练集和测试集,再在训练集上进行交叉验证。但在使用GridSearchCV时,我们仍然将数据单次划分为训练集和测试集,这可能会导致结果不稳定,也让我们过于依赖数据的此次划分。

我们可以深入一点,不是只将原始数据一次划分为训练集和测试集,而是使用交叉验证多次划分,这就是所谓的嵌套交叉验证。在嵌套交叉验证中,有一个外层循环,遍历将数据划分为训练集和测试集的所有划分,对于每种划分都运行一次网格搜索。然后,对每种外层划分,利用最佳参数设置计算得到测试集分数。

这一过程的结果是由分数组成的列表,不是一个模型,也不是一种参数设置。这些分数告诉我们在网格找到的最佳参数下模型的泛化能力好坏。由于嵌套交叉验证不提供可用于新数据的模型,所以在寻找可用于未来数据的预测模型时很少用到它,但是,它对于评估给定模型在特定数据集上的效果很有用。

在scikit-learn中实现嵌套交叉验证很简单。我们调用cross_cal_score,并用GridSearchCV的一个实例作为模型:

scores=cross_val_score(grid_search,iris.data,iris.target,cv=5)print('最佳参数:{}'.format(scores))
print('最佳精度:{}'.format(scores.mean()))

嵌套交叉验证的结果可以总结为“SVC在iris数据集上的交叉验证平均精度为98%”

这里我们在内层循环和外层循环中都使用了分层5折交叉验证。由于param_grid包含36中参数组合,所以需要构建36*5*5=900个模型,导致嵌套交叉验证过程的代价很高。这里我们在内层循环和外层循环中使用相同的交叉验证分离器,但这不是必需的,你可以在内层循环和外层循环中使用交叉验证策略的任意组合。理解上面单层代码的内容可能有点困难,将其展开为for循环可能有所帮助:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import ParameterGrid,StratifiedKFoldiris=load_iris()
X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,random_state=0)
param_grid={'C':[0.001,0.01,0.1,1,10,100],'gamma':[0.001,0.01,0.1,1,10,100]}def nested_cv(X,y,inner_cv,outer_cv,Classifier,parameter_grid):outer_scores=[]for training_samples,test_samples in outer_cv.split(X,y):#内层交叉验证,找到最佳参数best_parms={}best_score=-np.inf#遍历参数for parameters in parameter_grid:#在内层划分中累加分数cv_scores=[]for inner_train,inner_test in inner_cv.split(X[training_samples],y[training_samples]):clf=Classifier(**parameters)clf.fit(X[inner_train],y[inner_train])#在内层测试集上进行评估score=clf.score(X[inner_test],y[inner_test])cv_scores.append(score)#计算内层交叉验证的平均分数mean_score=np.mean(cv_scores)if mean_score>best_score:#如果比前面的模型逗号,则保留参数best_score=mean_scorebest_parms=parametersclf=Classifier(**best_parms)clf.fit(X[training_samples],y[training_samples])outer_scores.append(clf.score(X[test_samples],y[test_samples]))return np.array(outer_scores)scores=nested_cv(iris.data,iris.target,StratifiedKFold(5),StratifiedKFold(5),SVC,ParameterGrid(param_grid))
print('精度:{}'.format(scores))

2、交叉验证与网格搜索并行

虽然在许多参数上运行网格搜索和在大型数据集上运行网格搜索的计算量可能很大,但令人尴尬的是,这些计算都是并行的。这也就是说,在一种交叉验证划分下使用特定参数来构建一个模型,与利用其他参数的模型是完全独立的。这使得网格搜索与交叉验证称为多个CPU内核或集群上并行化的理想选择。你可以将n_jobs参数设置为你想使用的CPU内核数量,从而在GridSearchCV和cross_val_score中使用多个内核。你可以设置n_jobs=-1来使用所有可以用的内核。

但是,scikit-learn不允许并行操作的嵌套。因此,如果在模型中使用了n_jobs选项,那么就不能在GridSearchCV使用它来搜索这个模型。如果我们的数据集和模型都非常大,那么使用多个内核可能会占用大量内存,应该在并行构建大型模型时监控内存的使用情况。

还可以在集群内的多台机器上并行运行网格搜索和交叉验证。

对于spark用户,还可以使用最新开发的scikit-learn包,它允许在已经建立好的Spark集群上进行网格搜索。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/367885.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【简单讲解下npm常用命令】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

最靓丽的C++开源通知弹框SnoreToasts自动监听软件及网页通知

SnoreToasts,作为一款轻量级的C开源项目,为开发者提供了一个便捷的方式来在Windows操作系统上展示通知弹框(Toast Notifications)。 特点与优势 轻量级:SnoreToasts采用了简洁的代码设计,避免了不必要的依…

昇思25天学习打卡营第3天|yulang

今天主要学习03-张量Tensor,主要包含了处理创建张量、张量的属性、张量索引和张量运算,稀疏张量,有点看不太懂,感觉要开始入门到放弃了?张量在构建和训练深度学习模型中的实际应用,如卷积神经网络。 张量&a…

2024 AIGC 技术创新应用研讨会暨数字造型设计师高级研修班通知

尊敬的老师、领导您好! 为深入响应国家关于教育综合改革的战略部署,深化职业教育、高等教育改革,发挥企业主体重要作用,促进人才培养供给侧和产业需求侧结构要素全方位融合,充分把握人工智能创意式生成(AIGC)技术在教育领域的发展…

如何使用代理 IP 防止多个 Facebook 帐户关联 - 最佳实践

在社交媒体被广泛应用的今天,Facebook作为全球最大的社交网络平台之一,面临着很多挑战,其中之一就是用户行为的管理和安全。 为了防止多个账户之间的关联和滥用,Facebook需要采取一系列措施,其中包括使用静态住宅代理…

web自动化(三)鼠标操作键盘

selenuim 键盘操作 import timefrom selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.wait import WebDriverWait from selen…

【LeetCode的使用方法】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 🔮LeetCode的使用方法 🔮LeetCode 是一个在线编程平台,广泛…

Transformation(转换)开发-switch/case组件

一、switch/case组件-条件判断 体育老师要做一件非常重要的事情:判断学生是男孩还是女孩、或者是蜘蛛,然后让他们各自到指定的队伍中 体育老师做的事情,我们同样也会在Kettle中会经常用来。在Kettle中,switch/case组件可以来做类似…

【Linux】多线程(一万六千字)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 文章目录 前言 线程的概念 线程的理解(Linux系统为例) 在Linux系统里如何保证让正文部分的代码可以并发的去跑呢? 为什么要有多进程呢? 为…

Jedis、Lettuce、RedisTemplate连接中间件

jedis就像jdbc一样&#xff0c;用于两个端直接的连接。 1.创建Spring项目 这里不过多赘述... 2.导入连接工具jedis 在pom文件中导入jedis的依赖。 <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version&…

IO多路复用学习

Linux中的I/O多路复用 相关基础概念 在学习I/O多路复用之前&#xff0c;先学习一些相关的基础概念&#xff0c;便于理解。 内核缓冲区和用户缓冲区 &#x1f62e; CPU 上会运行两种程序&#xff0c;一种是操作系统的内核程序&#xff08;也称为系统程序&#xff09;&#x…

Redis持久化详解

【关闭文件、AOF 刷盘、释放内存这三个任务都有各自的任务队列】所以不是单线程 Redis有两种持久化方案&#xff1a; RDB持久化 AOF持久化 基于Redis集群解决单机Redis存在的问题 【Redis是单进程的】 【也有人做分布式section】 【主从集群中多个从就是做负载均衡的】 …

浅谈如何在linux上部署java环境

文章目录 一、部署环境1.1、JDK1.2、Tomcat1.3、MySQL 二、将自己写的的程序部署到云服务器上 一、部署环境 为了在linux上部署 Java web 程序&#xff0c;需要安装一下环境。 1.1、JDK 直接使用 yum 命令安装 openjdk。我们 windows系统上 下载的是 oracle 官方的 jdk。而 …

uniapp uniCloud云开发

uniCloud概述 uniCloud 是 DCloud 联合阿里云、腾讯云、支付宝云&#xff0c;为开发者提供的基于 serverless 模式和 js 编程的云开发平台。 uniCloud 的 web控制台地址&#xff1a;https://unicloud.dcloud.net.cn 文档&#xff1a;https://doc.dcloud.net.cn/uniCloud/ un…

python 第6册 辅助excel 002 批量创建非空白的 Excel 文件

---用教授的方式学习 此案例主要通过使用 while 循环以及 openpyxl. load_workbook()方法和 Workbook 的 save()方法&#xff0c;从而实现在当前目录中根据已经存在的Excel 文件批量创建多个非空白的Excel 文件。当运行此案例的Python 代码&#xff08;A002.py 文件&#xff0…

AnyView 对 SwiftUI 性能的影响

文章目录 前言测试设置动画卡顿浏览数据没有 AnyView 有 AnyView在浏览数据时修改没有 AnyView 有 AnyView分析结果总结 前言 AnyView 是一种类型擦除的视图&#xff0c;对于 SwiftUI 容器中包含的异构视图非常方便。在这些情况下&#xff0c;你不需要指定视图层次结构中所有视…

Java环境变量的设置

JAVA环境变量的设置 1.设置环境变量的作用2.如何设置环境变量2.1 找到系统的环境变量2.2 设置环境变量 1.设置环境变量的作用 说明&#xff1a;在Java中设置环境变量主要是为了能够让Java运行时能够找到Java开发工具包&#xff08;JDK&#xff09;的安装位置以及相关的库文件。…

【强化学习】第01期:绪论

笔者近期上了国科大周晓飞老师《强化学习及其应用》课程&#xff0c;计划整理一个强化学习系列笔记。笔记中所引用的内容部分出自周老师的课程PPT。笔记中如有不到之处&#xff0c;敬请批评指正。 文章目录 1.1 概述1.2 Markov决策过程1.2.1 Markov Process (MP) 马尔科夫过程1…

大模型对汽车行业意味着什么?_汽车企业大模型

引 言 大模型是一种利用海量数据进行训练的深度神经网络模型&#xff0c;其特点是拥有庞大的参数规模和复杂的计算结构。通过在大规模数据集上进行训练&#xff0c;大模型能够学习到丰富的模式和特征&#xff0c;从而具备强大的泛化能力&#xff0c;可以对未知数据做出准确的预…

Qt实战项目——贪吃蛇

一、项目介绍 本项目是一个使用Qt框架开发的经典贪吃蛇游戏&#xff0c;旨在通过简单易懂的游戏机制和精美的用户界面&#xff0c;为玩家提供娱乐和编程学习的机会。 游戏展示 二、主要功能 2.1 游戏界面 游戏主要是由三个界面构成&#xff0c;分别是游戏大厅、难度选择和游戏…