【yolov8系列】ubuntu上yolov8的开启训练的简单记录

前言

yolov8的广泛使用,拉取yolov8源码工程,然后配置环境后直接运行,初步验证自己数据的检测效果,在数据集准备OK的情况下 需要信手拈来,以保证开发过程的高效进行。
本篇博客更注意为了方便自己使用时参考。顺便也记录下ubuntu下的一些简单的常用的操作。

1 ubuntu的相关命令

ubuntu关于账号的操作

  1. 添加删除用户
    sudo adduser XXX       ## 新增用户
    sudo userdel -r XXX    ## 删除用户
    
  2. 修改密码
    sudo passwd user
    
  3. 查看所有用户
    grep bash /etc/passwd
    
  4. 添加删除管理员权限
    sudo adduser username sudo
    sudo deluser username sudo
    

ubuntu下磁盘信息查看

  1. 查看硬盘容量
    df -h                              ## 查看硬盘容量
    du -h --max-depth=1         ## 查看当前路径文件夹大小
    
  2. 查看文件夹详细信息
    ls -l
    ls -al
    
  3. 统计文件夹中文件数量
    ls -l | grep "^-" | wc -l
    
  4. 查看显卡占用
    nvidia-smi           # 显示PID
    ps -f -p 26359     # 查询PID
    

2 安装Anaconda

官网上下载不流畅,清华镜像丝滑下载(官方通知不更新 但够使用),链接为
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/ mini版本,都能正常使用。

个人选择miniconda安装,下载【Miniconda3-4.7.12-Linux-x86_64.sh】

chmod +x Miniconda3*.sh
bash Miniconda3*.sh1 按 enter 键2 输入yes并enter3 选择路径:enter4 是否添加环境变量: yes5 是否安装Microsoft vs no就行(因为已经安装了vscode和qt,所以这里no就行)
source ~/.bashrc
conda list                   #显示自己已安装包
conda create -n env_name(自己写名字) python=3.7(版本号) # 创建虚拟环境
source activate env_name    #激活虚拟环境
deactivate                 # 退出虚拟环境
conda env list            # 查看已有虚拟环境
conda install# 安装包
conda remove ~         # 卸载包
conda update           # 更新

3 安装VScode

https://blog.csdn.net/magic_ll/article/details/119679279

4 YOLOV8的环境配置与运行

4.1 工程下载与环境配置

工程下载ultralytics 8.0.36。

conda create -n YOLOV8 python=3.8
conda activate YOLOV8
pip install ultralytics==8.0.36
pip list          ## 查看安装列表
## 剩余需要的库,正常安装即可

4.2 demo工程

# import sys
# sys.path.append("./")
from ultralytics import YOLO
# import onnxruntime as ort
import cv2
import os
import globdef demo():### predict===================================# 加载模型test_path = "https://ultralytics.com/images/bus.jpg"outpath = os.path.join(os.getcwd(), "runs/detect")# model = YOLO("yolov8n.yaml")  # 从头开始构建新模型model = YOLO("yolov8n.pt")  # 加载预训练模型(推荐用于训练)# Use the modelresults = model.train(data="coco128.yaml", epochs=3)  # 训练模型results = model.val()  # 在验证集上评估模型性能results = model(test_path)  # 预测图像results = model.predict(test_path, device=0,save=True,show=False,save_txt=True, imgsz=[640,640],save_conf=True, name=outpath, iou=0.5)  ## 预测图像 ## 这里的imgsz为高宽success = model.export(format="onnx")  # 将模型导出为 ONNX 格式demo()

可能报错:运行上述脚本,报错如下,原因是显卡驱动和cuda版本不匹配。
在这里插入图片描述
提高显卡驱动版本或降低pytorch版本即可。这里方便起见,降低pytorch版本与显卡驱动匹配即可。
此时pytorch版本为:torch2.3.0,torchvision0.18.0。重新安装版本torch2.1.1,torchvision0.16.1。


4.3 自己的工程训练

# import sys
# sys.path.append("./")
from ultralytics import YOLO
# import onnxruntime as ort
import cv2
import os
import globdef export_own():model_file = "./yolov8n.pt",print(model_file)model = YOLO(model_file)  # load a pretrained model (recommended for training)pt_path = model.model.pt_pathuse_model = os.path.basename(pt_path)## 通过修改pt_path,从而直接修改转换的onnx的名字,就可以导出不同输入尺寸的onnx模型# model.model.pt_path = pt_path.replace(use_model, f"{use_model[:-3]}_export{use_model[-3:]}")model.export(format='onnx', opset=11, simplify=True, dynamic=False, imgsz=[352,352])def train_own():model_path = "yolov8s.pt"# model_path = os.path.join(os.getcwd(), "runs/detect/yolov8_case23_epoch300/weights/epoch250.pt")savename = os.path.join(os.getcwd(), "runs/detect/yolov8_case24_epoch300")model = YOLO(model_path)  model.train(data="./dataYaml/Object_case19.yaml", device="4,5,6,7", imgsz=352, close_mosaic=50, epochs=300, batch=512, workers=16, save_period=10, name=savename, patience=300,# resume=True ## 是否要继续训练)  if __name__=="__main__":train_own()export_own()

5 端侧模型转换

5.1 RK3566模型转换

rknn-toolkit2-v1.4的环境配置


5.2 SIM9383模型转换

SIM9383 的环境配置

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/369204.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nginx 常用配置与应用

Nginx 常用配置与应用 官网地址:https://nginx.org/en/docs/ 目录 Nginx 常用配置与应用 Nginx总架构 正向代理 反向代理 Nginx 基本配置反向代理案例 负载均衡 Nginx总架构 进程模型 正向代理 反向代理 Nginx 基本配置反向代理案例 负载均衡 Nginx 基本配置…

Linux启动elasticsearch,提示权限不够

Linux启动elasticsearch,提示权限不够,如下图所示: 解决办法: 设置文件所有者,即使用户由权限访问文件 sudo chown -R 用户名[:新组] ./elasticsearch-8.10.4 //切换到elasticsearch-8.10.4目录同级 chown详细格式…

基于SpringBoot的就业信息管理系统

你好,我是计算机学姐码农小野!如果你对就业信息管理系统感兴趣或有相关需求,欢迎私信联系我。 开发语言: Java 数据库: MySQL 技术: SpringBootMySql 工具: MyEclipse、Tomcat 系统展示…

ChatGPT如何提升论文写作(附指令集合)

先讲前提: ChatGPT无论是3.5还是4.0都存在非常严重的幻觉问题,目前ChatGPT无法替代搜索引擎。 如果你希望得到更加优质的体验,请用GPT-4.0,幻觉问题上比3.5大幅降低 ChatGPT中文版,一站式AI创作平台​aibox365.com …

微信小程序的智慧物流平台-计算机毕业设计源码49796

目 录 摘要 1 绪论 1.1 研究背景 1.2 研究意义 1.3研究方法 1.4开发技术 1.4.1 微信开发者工具 1.4.2 Node.JS框架 1.4.3 MySQL数据库 1.5论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 用户登录流程 2.2.2 数据删除流程 2.3 系统功能分…

为什么英智智能宝能让律师工作事半功倍

大语言模型能够极大提高人们的知识理解能力和知识服务能力,法律服务是典型的知识服务领域,据悉律师有38%的任务都是重复性工作,这些任务有潜力被大模型替代。 但在法律行业中的高度专业且复杂的问题时,通用型大模型的回答虽能提供…

Twitter群发消息API接口的功能?如何配置?

Twitter群发消息API接口怎么申请?如何使用API接口? 为了方便企业和开发者有效地与用户互动,Twitter提供了各种API接口,其中Twitter群发消息API接口尤为重要。AokSend将详细介绍Twitter群发消息API接口的功能及其应用场景。 Twit…

APP渗透-android12夜神模拟器+Burpsuite实现

一、夜神模拟器下载地址:https://www.yeshen.com/ 二、使用openssl转换证书格式 1、首先导出bp证书 2、将cacert.der证书在kali中转换 使用openssl生成pem格式证书,并授予最高权限 openssl x509 -inform der -in cacert.der -out cacert.pem chmod 777 cacert…

---java KMP算法---

对于在一段字符串中查找一段字符串,如果用数组遍历的方法那就效率低下,所以产生了效率更高的KMP算法 KMP算法查只需要遍历一次字符串就可以找出第一次出现的目标字符串 要学的话建议区b站看视频,学着由视频学者比较容易 我这里就提供下我实…

Logstash安装插件失败的问题

Logstash安装插件失败的问题 安装 logstash-output-jdbc 失败 报错为: Unable to download data from https://rubygems.org - Net::OpenTimeout: Failed to open TCP connection to rubygems.org:443 (execution expired) (https://rubygems.org/latest_specs.4.…

NLP篇1

场景:假设给你一篇文章。 目标:说白了,就是数学的分类。但是如何实现分类呢。下面将逐步一 一 分析与拆解。先把目标定好了和整体框架定好了。而不是只见树木而不见森林。 情感分类(好评、差评,中性) 整体…

Portainer 是一个开源的容器管理平台-非常直观好用的Docker图形化项目

在这个容器化技术大行其道的时代,Docker和Kubernetes几乎成了技术圈的新宠。可是管理起容器来,有时候还是有点头大。命令行操作对于某些小伙伴来说,可能还是有点不太友好。 今天开源君分享一个叫 Portainer 的开源项目,一个用来简…

Dungeonborne卡顿怎么办 快速解决Dungeonborne卡顿问题

随着Dungeonborne游戏剧情的深入,玩家将逐渐解锁更多的地图和副本,每个区域都有其独特的生态和敌人。在探索的过程中,玩家不仅可以获得强大的装备和道具,还能结识到志同道合的伙伴,共同面对更强大的敌人。不过也有玩家…

Jenkins 强制杀job

有时候有的jenkins job运行时间太长,在jenkins界面点击x按钮进行abort,会失败: 这时候点击: “Click here to forcibly terminate running steps” 会进一步kill 任务,但是也还是有杀不掉的可能性。 终极武器是jenkin…

棱镜七彩上榜数说安全《2024年中国网络安全市场全景图》

2024年7月4日,数说安全正式发布《2024年中国网络安全市场全景图》(以下简称全景图),棱镜七彩凭借专业的技术优势和产品创新实力再次上榜开发安全-软件成分分析(SCA)领域。 据悉,本次全景图在各市…

zerotier-one自建根服务器方法五

一、简介 前面几篇文章已经写完了自己建立服务器的方法,今天写一下我在使用过程中遇到的问题和解决方法。 二、准备工作 准备一个有公网IP的云主机。 要稳定性、安全性、不差钱的可以使用阿里、腾讯等大厂的云服务器。 本人穷屌丝一枚,所以我用的是免…

扫地机器人如何利用图算法来进行避障策略和优化清扫路径的?

前言 扫地机器人是现代家庭中最常见的智能设备。其基本的核心组件由主控系统(大脑)、传感器等控制系统(感知系统)、动力供应系统(心脏)、清扫系统(四肢)组成。 扫地机器人的智能、高…

基于Redisson实现分布式锁

基于redisson实现分布式锁 之前背过分布式锁几种实现方案的八股文,但是并没有真正自己实操过。现在对AOP有了更深一点的理解,就自己来实现一遍。 1、分布式锁的基础知识 分布式锁是相对于普通的锁的。普通的锁在具体的方法层面去锁,单体应…

一款EF Core下高性能、轻量级针对分表分库读写分离的解决方案

ShardingCore项目介绍 ShardingCore是一款开源、简单易用、高性能、普适性,针对EF Core生态下的分表分库的扩展解决方案,支持EF Core2的所有版本,支持EF Core2的所有数据库、支持自定义路由、动态路由、高性能分页、读写分离的一款EF Core拓展…

使用大漠插件进行京东联盟转链

由于之前开发了一套使用api转链的接口在前面几个月失效了。因为京东联盟系统升级,导致之前可以转的链接现在必须要升级权限才可以。但是升级条件对于我们这些自己买东西转链想省点钱的人来说基本上达不到。 所以,基于这种情况。我之前研究过大漠插件&am…