【YOLOv5/v7改进系列】改进池化层为ASPP

一、导言

Atrous Spatial Pyramid Pooling (ASPP)模块是一种用于多尺度特征提取的创新技术,旨在提升深度学习模型在语义图像分割任务中的表现。ASPP模块通过在不同的采样率下应用空洞卷积,可以捕获不同大小的对象以及图像的上下文信息,从而增强模型在处理不同尺度物体时的鲁棒性。以下是ASPP模块的优点和缺点:

优点:
  1. 多尺度感知:ASPP通过使用不同空洞率的卷积核,能够在不增加参数数量和计算量的前提下,有效地扩大卷积核的视场,捕捉到不同尺度的物体特征。
  2. 上下文融合:ASPP不仅关注于目标物体本身,还能同时整合图像的全局背景信息,这对于理解复杂场景下的物体尤其重要。
  3. 性能提升:在实验中,ASPP被证明能够显著提高模型的分割精度,尤其是在处理复杂多样的场景时,如Cityscapes数据集上的实验结果所展示的那样。
  4. 结合CRF:ASPP与条件随机场(CRF)的结合进一步提升了物体边界的定位精度,有助于改善分割结果的细节表达。
缺点:
  1. 计算资源需求:尽管ASPP能够通过调整空洞率避免增加过多参数,但在处理高分辨率图像时,如Cityscapes数据集中的2048x1024像素图像,模型仍需分块处理以克服GPU内存限制,这可能会引入额外的计算开销。
  2. 模型复杂度:ASPP引入了多个并行的卷积路径,这增加了模型的设计和调试复杂度。此外,需要精细调整不同空洞率的设置以获得最佳效果。
  3. 实施难度:为了在高分辨率图像上运行,ASPP可能需要特定的技术,如图像分块处理,这可能不是所有用户都能轻易实现的。
  4. 可能的过拟合风险:虽然ASPP可以提高模型对多尺度物体的识别能力,但如果未正确调整,过多的上下文信息也可能导致过拟合,特别是在训练数据有限的情况下。

二、准备工作

首先在YOLOv5/v7的models文件夹下新建文件morepooling.py,导入如下代码

from models.common import *# https://arxiv.org/pdf/1606.00915
class ASPP(nn.Module):def __init__(self, in_channel=512, out_channel=256):super(ASPP, self).__init__()self.mean = nn.AdaptiveAvgPool2d((1, 1))  # (1,1)means ouput_dimself.conv = nn.Conv2d(in_channel, out_channel, 1, 1)self.atrous_block1 = nn.Conv2d(in_channel, out_channel, 1, 1)self.atrous_block6 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=6, dilation=6)self.atrous_block12 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=12, dilation=12)self.atrous_block18 = nn.Conv2d(in_channel, out_channel, 3, 1, padding=18, dilation=18)self.conv_1x1_output = nn.Conv2d(out_channel * 5, out_channel, 1, 1)def forward(self, x):size = x.shape[2:]image_features = self.mean(x)image_features = self.conv(image_features)image_features = F.upsample(image_features, size=size, mode='bilinear')atrous_block1 = self.atrous_block1(x)atrous_block6 = self.atrous_block6(x)atrous_block12 = self.atrous_block12(x)atrous_block18 = self.atrous_block18(x)net = self.conv_1x1_output(torch.cat([image_features, atrous_block1, atrous_block6,atrous_block12, atrous_block18], dim=1))return net

其次在在YOLOv5/v7项目文件下的models/yolo.py中在文件首部添加代码

from models.morepooling import *

并搜索def parse_model(d, ch)

定位到如下行添加以下代码

ASPP

三、YOLOv7-tiny改进工作

完成二后,在YOLOv7项目文件下的models文件夹下创建新的文件yolov7-tiny-morepooling.yaml,导入如下代码。

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# yolov7-tiny backbone
backbone:# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True[[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2[-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7[-1, 1, MP, []],  # 8-P3/8[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14[-1, 1, MP, []],  # 15-P4/16[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21[-1, 1, MP, []],  # 22-P5/32[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28]# yolov7-tiny head
head:[[-1, 1, ASPP, [256]], # 29[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 39[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 49[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 39], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 29], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65[49, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[57, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[65, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[66, 67, 68], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)]
from  n    params  module                                  arguments                     0                -1  1       928  models.common.Conv                      [3, 32, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]2                -1  1      2112  models.common.Conv                      [64, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]3                -2  1      2112  models.common.Conv                      [64, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]4                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]5                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]6  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           7                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]8                -1  1         0  models.common.MP                        []                            9                -1  1      4224  models.common.Conv                      [64, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]10                -2  1      4224  models.common.Conv                      [64, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]11                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]12                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]13  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]15                -1  1         0  models.common.MP                        []                            16                -1  1     16640  models.common.Conv                      [128, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]17                -2  1     16640  models.common.Conv                      [128, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]18                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]19                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]20  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           21                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]22                -1  1         0  models.common.MP                        []                            23                -1  1     66048  models.common.Conv                      [256, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]24                -2  1     66048  models.common.Conv                      [256, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]25                -1  1    590336  models.common.Conv                      [256, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]26                -1  1    590336  models.common.Conv                      [256, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]27  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           28                -1  1    525312  models.common.Conv                      [1024, 512, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]29                -1  1   4130304  models.morepooling.ASPP                 [512, 256]                    30                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]31                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          32                21  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]33          [-1, -2]  1         0  models.common.Concat                    [1]                           34                -1  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]35                -2  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]36                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]37                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]38  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           39                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]40                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]41                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          42                14  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]43          [-1, -2]  1         0  models.common.Concat                    [1]                           44                -1  1      4160  models.common.Conv                      [128, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]45                -2  1      4160  models.common.Conv                      [128, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]46                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]47                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]48  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           49                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]50                -1  1     73984  models.common.Conv                      [64, 128, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]51          [-1, 39]  1         0  models.common.Concat                    [1]                           52                -1  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]53                -2  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]54                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]55                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]56  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           57                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]58                -1  1    295424  models.common.Conv                      [128, 256, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]59          [-1, 29]  1         0  models.common.Concat                    [1]                           60                -1  1     65792  models.common.Conv                      [512, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]61                -2  1     65792  models.common.Conv                      [512, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]62                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]63                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]64  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           65                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]66                49  1     73984  models.common.Conv                      [64, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]67                57  1    295424  models.common.Conv                      [128, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]68                65  1   1180672  models.common.Conv                      [256, 512, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]69      [66, 67, 68]  1     17132  models.yolo.IDetect                     [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]Model Summary: 247 layers, 9487884 parameters, 9487884 gradients, 16.0 GFLOPS

运行后若打印出如上文本代表改进成功。

四、YOLOv5s改进工作

完成二后,在YOLOv5项目文件下的models文件夹下创建新的文件yolov5s-morepooling.yaml,导入如下代码。

# Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, ASPP, [1024]],  # 9#[-1, 1, SPP, [1024]],#[-1, 1, SPPF, [1024, 5]],  # 9#[-1, 1, SPPCSPC, [1024]],]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]
from  n    params  module                                  arguments                     0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                2                -1  1     18816  models.common.C3                        [64, 64, 1]                   3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               4                -1  2    115712  models.common.C3                        [128, 128, 2]                 5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              6                -1  3    625152  models.common.C3                        [256, 256, 3]                 7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 9                -1  1   8915968  models.morepooling.ASPP                 [512, 512]                    10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          12           [-1, 6]  1         0  models.common.Concat                    [1]                           13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          16           [-1, 4]  1         0  models.common.Concat                    [1]                           17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              19          [-1, 14]  1         0  models.common.Concat                    [1]                           20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              22          [-1, 10]  1         0  models.common.Concat                    [1]                           23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          24      [17, 20, 23]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]Model Summary: 268 layers, 15281398 parameters, 15281398 gradients, 22.6 GFLOPs

运行后若打印出如上文本代表改进成功。

五、YOLOv5n改进工作

完成二后,在YOLOv5项目文件下的models文件夹下创建新的文件yolov5n-morepooling.yaml,导入如下代码。

# Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, ASPP, [1024]],  # 9#[-1, 1, SPP, [1024]],#[-1, 1, SPPF, [1024, 5]],  # 9#[-1, 1, SPPCSPC, [1024]],]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]
from  n    params  module                                  arguments                     0                -1  1      1760  models.common.Conv                      [3, 16, 6, 2, 2]              1                -1  1      4672  models.common.Conv                      [16, 32, 3, 2]                2                -1  1      4800  models.common.C3                        [32, 32, 1]                   3                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                4                -1  2     29184  models.common.C3                        [64, 64, 2]                   5                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               6                -1  3    156928  models.common.C3                        [128, 128, 3]                 7                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              8                -1  1    296448  models.common.C3                        [256, 256, 1]                 9                -1  1   2229760  models.morepooling.ASPP                 [256, 256]                    10                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          12           [-1, 6]  1         0  models.common.Concat                    [1]                           13                -1  1     90880  models.common.C3                        [256, 128, 1, False]          14                -1  1      8320  models.common.Conv                      [128, 64, 1, 1]               15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          16           [-1, 4]  1         0  models.common.Concat                    [1]                           17                -1  1     22912  models.common.C3                        [128, 64, 1, False]           18                -1  1     36992  models.common.Conv                      [64, 64, 3, 2]                19          [-1, 14]  1         0  models.common.Concat                    [1]                           20                -1  1     74496  models.common.C3                        [128, 128, 1, False]          21                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              22          [-1, 10]  1         0  models.common.Concat                    [1]                           23                -1  1    296448  models.common.C3                        [256, 256, 1, False]          24      [17, 20, 23]  1      8118  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [64, 128, 256]]Model Summary: 268 layers, 3830422 parameters, 3830422 gradients, 5.9 GFLOPs
六、ASPP的优点
  1. 多尺度特征提取:通过使用不同大小的空洞卷积(atrous convolutions),ASPP能够以不同的感受野来捕获图像中的多尺度特征。这在处理具有不同尺寸的目标或纹理时非常有用。

  2. 并行计算:ASPP模块中的多个分支可以并行处理,这意味着它可以在GPU上高效运行,因为GPU擅长并行计算任务。

  3. 全局上下文信息:通过全局平均池化(AdaptiveAvgPool2d)和随后的1x1卷积层,ASPP能够捕捉到全局的上下文信息,这对于理解图像的整体语义非常重要。

  4. 参数高效性:尽管ASPP模块包含多个卷积层,但每个分支的输出通道数是固定的,这有助于保持模型的参数量在一个合理的范围内,避免过拟合。

  5. 灵活的输出通道数:ASPP模块允许指定输入和输出通道的数量,这使得它可以很容易地适应不同的网络架构需求。

  6. 融合多级特征:通过1x1卷积层将所有分支的输出特征图进行融合,可以有效地整合从不同尺度获得的信息,从而产生更丰富的特征表示。

  7. 上采样:对于通过全局平均池化的特征图,使用双线性插值(bilinear interpolation)进行上采样,使其与原始输入特征图的尺寸一致,便于后续特征融合。

七、注意

本篇文章中ASPP代码的空洞率分别为1、6、12、18.可自行测试删除与改进,以及代码中的bilinear也可改进为其他方式,并阐述在你的论文中,具体可见我之前博客。

运行后打印如上代码说明改进成功。

更多文章产出中,主打简洁和准确,欢迎关注我,共同探讨!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/369311.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Astro新前端框架首次体验

Astro新前端框架首次体验 1、什么是Astro Astro是一个静态网站生成器的前端框架,它提供了一种新的开发方式和更好的性能体验,帮助开发者更快速地构建现代化的网站和应用程序。 简单来说就是:Astro这个是一个网站生成器,可以直接…

Hyper-V克隆虚拟机教程分享!

方法1. 使用导出导入功能克隆Hyper-V虚拟机 导出和导入是Hyper-V服务器备份和克隆的一种比较有效的方法。使用此功能,您可以创建Hyper-V虚拟机模板,其中包括软件、VM CPU、RAM和其他设备的配置,这有助于在Hyper-V中快速部署多个虚拟机。 在…

前端引用vue/element/echarts资源等引用方法Blob下载HTML

前端引用下载vue/element/echarts资源等引用方法 功能需求 需求是在HTML页面中集成Vue.js、Element Plus(Element UI的Vue 3版本)、ECharts等前端资源,使用Blob下载HTML。 解决方案概述 直接访问线上CDN地址:简单直接&#xff0c…

计算机网络(2

计算机网络续 一. 网络编程 网络编程, 指网络上的主机, 通过不同的进程, 以编程的方式实现网络通信(或网络数据传输). 即便是同一个主机, 只要不同进程, 基于网络来传输数据, 也属于网络编程. 二. 网络编程套接字(socket) socket: 操作系统提供的网络编程的 API 称作 “soc…

【数据结构与算法】堆排序算法原理与实现:基于堆实现的高效排序算法

💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《数据结构与算法》 期待您的关注 ​ 目录 一、引言 堆排序的简介 堆排序的特点 二、堆的概念 三、堆排序算法的原理 四、堆…

软件测试面试1000问(含答案)

1、自动化代码中,用到了哪些设计模式? 单例设计模式工厂模式PO设计模式数据驱动模式面向接口编程设计模式 2、什么是断言( Assert) ? 断言Assert用于在代码中验证实际结果是不是符合预期结果,如果测试用例执行失败会抛出异常并提供断言日志 3、什么是web自动化…

数据结构预科

在堆区申请两个长度为32的空间,实现两个字符串的比较【非库函数实现】 要求: 1> 定义函数,在对区申请空间,两个申请,主函数需要调用2次 2> 定义函数,实现字符串的输入,void input(char …

Jenkins容器的部署

本文主要是记录如何在Centos7上安装docker,以及在docker里面配置tomcat、mysql、jenkins等环境。 一、安装docker 1.1 准备工作 centos7、VMware17Pro 1.2 通过yum在线安装dokcer yum -y install docker1.3 启动docker服务 systemctl start docker.service1.4 查看docke…

Java传引用问题

本文将介绍 Java 中的引用传递,包括其定义、实现方式、通过引用修改原来指向的内容和通过引用修改当前引用的指向的区别 目录 1、引用传递的概念 2、引用传递的实现方式 3、传引用会发生的两种情况: 通过引用修改当前引用的指向 通过引用修改原来指…

《数据仓库与数据挖掘》 总复习

试卷组成 第一章图 第二章图 第三章图 第四章图 第五章图 第六章图 第九章图 第一章 DW与DM概述 (特点、特性) DB到DW 主要特征 (1)数据太多,信息贫乏(Data Rich, Information Poor)。 &a…

H2 Database Console未授权访问漏洞封堵

背景 H2 Database Console未授权访问,默认情况下自动创建不存在的数据库,从而导致未授权访问。各种未授权访问的教程,但是它怎么封堵呢? -ifExists 很简单,启动参数添加 -ifExists ,它的含义&#xff1a…

【机器学习】机器学习的重要方法——线性回归算法深度探索与未来展望

欢迎来到 破晓的历程博客 引言 在数据科学日益重要的今天,线性回归算法以其简单、直观和强大的预测能力,成为了众多领域中的基础工具。本文将详细介绍线性回归的基本概念、核心算法,并通过五个具体的使用示例来展示其应用,同时探…

CASS7.0按方向和距离绘制图形

1、绘制工具 2、按方向和距离绘制 (1)切换方向 (2)距离输入

Python函数缺省参数的 “ 坑 ” (与C++对比学习)

我们都知道Python函数的缺省参数可以降低我们调用函数的成本,但是一般我们的缺省参数都是不可变对象,如果是可变对象,我们对其多次调用会发生什么呢? def func(arr[]):arr.append(Hello)print(arr)func() func() func() 这貌似…

MongoDB-社区版-本地安装

系统:win10 1. 下载server:Download MongoDB Community Server | MongoDB 我选的zip包 2. 下载shell:MongoDB Shell Download | MongoDB 我选的zip包 3. 启动server 4. 启动shell, 完成

MYSQL函数进阶详解:案例解析(第19天)

系列文章目录 一、MySQL的函数(重点) 二、MySQL的窗口函数(重点) 三、MySQL的视图(熟悉) 四、MySQL的事务(熟悉) 文章目录 系列文章目录前言一、MySQL的函数1. 聚合函数2. group_c…

Redis 多数据源自定义配置 Spring Boot 升级版

文章目录 1.前言2.git 示例地址3.需求4.代码实现4.1 application.properties 配置文件4.2 获取 application.properties 中的 redis 配置4.2.1 Environment 对象来获取自定义 redis 配置 4.3 初始化 RedisTemplate 对象,并注册到 Spring IOC 容器4.3.1 初始化方法4.…

spring boot (shiro)+ websocket测试连接不上的简单检测处理

1、用前端连接测试的demo一切正常,但是到了项目中连接不上了 一开始以为是地址错,但是换了apifox测试也是不可以。 2、考虑是shiro进行了拦截了,所以就访问不到了地址,那么就放行。 3、再次用apifox测试,成功了。 当然…

马拉松报名小程序的设计

管理员账户功能包括:系统首页,个人中心,用户管理,赛事信息管理,赛事报名管理,活动商城管理,留言板管理,系统管理 微信端账号功能包括:系统首页,赛事信息&…

C++:智能指针

目录 前言 1.内存泄漏及其危害 2.内存泄漏分类: 3.如何检测内存泄漏 4.如何避免内存泄漏 一、为什么需要智能指针? 二、智能指针的使用及其原理 1.RAII 2.智能指针 3.std::auto_ptr 4.std::unique_ptr 5.std::shared_ptr 6.std::weak_ptr…