香橙派AIpro开发板评测:部署yolov5模型实现图像和视频中物体的识别

OrangePi AIpro 作为业界首款基于昇腾深度研发的AI开发板,自发布以来就引起了我的极大关注。其配备的8/20TOPS澎湃算力,堪称目前开发板市场中的顶尖性能,实在令人垂涎三尺。如此强大的板子,当然要亲自体验一番。今天非常荣幸地拿到了一块OrangePi AIpro开发板,我迫不及待地选中了一款开源项目中模型进行部署,期待为大家带来一次精彩的体验。

在这里插入图片描述


一、香橙派AIpro介绍

1. 香橙派介绍

香橙派(Orange Pi)是一款开源的单板计算机,广泛应用于教育、嵌入式开发、物联网等领域。香橙派以其高性能和多样的功能模块,成为开发者和爱好者的理想选择。香橙派系列产品提供了丰富的接口和扩展能力,支持各种操作系统,如Android、Ubuntu、Debian等。

2. 香橙派AIpro开发版介绍

OrangePi AIpro 是2023.12月初,香橙派联合华为发布了基于昇腾的Orange Pi AIpro开发板,提供8/20TOPS澎湃算力,支持复杂的计算任务,适用于AI边缘计算、深度视觉学习、视频流AI分析等多个领域。作为业界首款基于昇腾深度研发的AI开发板,它搭载了高性能处理器和丰富的AI加速硬件,支持神经网络推理、图像识别等高计算需求的任务。

香橙派AIpro开发版正面:
在这里插入图片描述
香橙派AIpro开发版背面:
在这里插入图片描述

香橙派AIpro的主要特点包括:

特点详细描述
昇腾AI技术路线集成图形处理器,拥有8GB/16GB LPDDR4X内存。支持双4K高清输出,提供8/20 TOPS AI算力,支持复杂的计算任务,适用于AI边缘计算、深度视觉学习、视频流AI分析等。
丰富的接口包括两个HDMI输出、GPIO接口、Type-C电源接口、支持SATA/NVMe SSD 2280的M.2插槽、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB、两个MIPI摄像头、一个MIPI屏等。支持SATA/NVMe SSD 、以太网等,方便连接各种外设。
操作系统支持支持Ubuntu和openEuler操作系统,提供灵活的开发环境。
强大的AI加速模块昇腾AI技术路线,集成图形处理器,拥有8GB/16GB LPDDR4X内存。支持双4K高清输出,提供8/20 TOPS AI算力,提升深度学习和推理任务的效率。

二、香橙派AIpro评测(测试部署YOLOv5模型)

1. Xshell连接香橙派

确保香橙派已正确连接到电源和网络,并开启电源。

使用显示器和键盘登录香橙派,默认登录名为 HwHiAiUser,密码为 Mind@123。

点击右上角WIFI标识,继续点击“查看连接信息”,获取其内网IP地址,我的为 192.168.0.103。
在这里插入图片描述

然后,在你的电脑上启动Xshell,输入刚刚查到的内网IP和账号密码,远程连接香橙派,这样我们就能够通过Xshell远程操作开发板,Xftp同理,后面我们也需要用到Xftp实现个人电脑和开发板的文件同步。

登录成功如图:

在这里插入图片描述


2. 安装Python环境

为了在香橙派上运行YOLOv5模型,首先需要安装Python和pip。使用以下命令更新软件包列表并安装Python 3和pip:

sudo apt update
sudo apt install python3 python3-pip -y

在本次测评中,我们提前安装了Python 3.9。你可以通过以下命令检查已安装的Python版本:

python3 --version

确保输出的版本号符合要求,例如:Python 3.9.x。


3. 安装YOLOv5

从GitHub上下载YOLOv5代码库。
在这里插入图片描述

通过Xftp或其他文件传输工具将其拷贝到香橙派上。

在这里插入图片描述

在香橙派终端中,进入YOLOv5目录并解压压缩包:

unzip yolov5-master.zip
cd yolov5-master

在这里插入图片描述

进入解压后的目录后,使用以下命令安装所需的Python依赖:

pip3 install -r requirements.txt

在这里插入图片描述

这些依赖包括PyTorch、OpenCV等YOLOv5运行所需的库。


4. 使用预训练模型识别图片

为了测试YOLOv5模型的效果,我们将使用预训练模型识别一张公交车场景的示例图片。运行以下命令:

python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg

在这里插入图片描述

此命令将加载预训练的YOLOv5模型,并在指定的图片上进行目标检测。识别结果将保存在runs/predict目录下,你可以查看输出的图片文件。

这里我们比较以下识别前后的公交车场景的示例图片:

识别前:

在这里插入图片描述

识别后:

在这里插入图片描述

通过对比识别结果和原始图片,你会发现YOLOv5模型在识别效率和精度方面表现非常出色。无论是公交车的轮廓还是细节,模型都能够准确地识别并标注出来,显示了其强大的图像处理能力。


5. 选择最优模型

在测试了YOLOv5预训练模型后,你可能希望选择一个最优模型来满足特定的需求。YOLOv5提供了多个不同的模型变种(如YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x),这些模型在性能和精度上各有侧重。你可以根据需要选择最适合的模型。

首先,下载其他模型的权重文件:

wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5m.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5l.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5x.pt

然后,分别使用不同的模型权重进行测试,比较它们的性能和精度。例如,使用YOLOv5s模型:

python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/bus.jpg

你可以通过比较不同模型在同一图片上的检测结果,选择性能和精度最符合你需求的模型。记录下检测时间和精度数据,帮助你做出最优选择。


6. 连接摄像头调试

为了进一步验证YOLOv5模型的性能,可以连接摄像头进行实时视频流的检测。首先,确保香橙派支持并正确连接摄像头。你可以使用USB摄像头或MIPI摄像头接口。

在这里插入图片描述

安装摄像头依赖:

sudo apt install v4l-utils -y

检查摄像头连接:

使用以下命令检查摄像头是否已连接:

v4l2-ctl --list-devices

运行实时检测:

使用YOLOv5模型对实时视频流进行检测。假设摄像头设备路径为/dev/video0,运行以下命令:

python detect.py --weights yolov5m.pt --img 640 --conf 0.25 --source 0

这里,--source 0 指定了摄像头设备为默认的/dev/video0,需要根据实际情况更改设备路径。

效果如下:

在这里插入图片描述

通过这些步骤,你可以在香橙派上成功部署并调试YOLOv5模型,实现实时视频流的目标检测。结合摄像头的实际使用情况和模型的检测结果,可以进一步优化模型参数和系统性能,以满足具体应用场景的需求。


三、使用感受及产品评价

1. 使用感受

在使用香橙派AIpro进行YOLOv5模型的测试部署过程中,香橙派AIpro的表现非常出色。通过Xshell远程连接香橙派,操作简便,响应迅速。Python环境的安装和YOLOv5的部署过程也十分顺利,依赖安装快捷,模型运行稳定,识别结果准确。

香橙派AIpro的强大硬件配置在处理复杂计算任务时表现尤为突出,特别是其AI加速模块,在深度学习任务中提供了显著的性能提升。此外,香橙派AIpro提供了丰富的学习资料和开发资源,包括详细的用户指南、案例教程和产品文档,为开发者提供了全方位的支持,使其能够更快地上手并实现各种AI应用。

整体使用体验非常流畅,产品质量优秀,是开发和学习AI技术的理想平台。无论是教育用途还是专业开发,香橙派AIpro都能满足用户的需求,值得推荐。

2. 产品评价

经过评测,我认为香橙派AIpro是一款非常不错的产品,从几个评价维度出发,我为大家列出了如下总结。

评价维度详细描述
硬件性能香橙派AIpro配备8/20TOPS算力,在同类产品中处于领先地位。无论是进行深度学习模型的训练还是推理,AI加速模块都能显著提升性能,确保任务高效完成。
软件支持支持Ubuntu和openEuler操作系统,为开发者提供了灵活的开发环境。丰富的学习资源,包括用户指南、案例教程和产品文档,使开发者能够轻松上手,快速实现AI应用的开发和部署。
扩展性香橙派AIpro具有出色的扩展性。丰富的接口配置,如双HDMI输出、USB3.0、Type-C电源接口、M.2插槽等,满足各种外设连接需求。无论是连接显示器、摄像头,还是扩展存储,香橙派AIpro都能提供良好的支持。
性价比考虑到其强大的性能和丰富的功能,香橙派AIpro的价格非常具有竞争力。对于教育用途和专业开发者来说,这是一款性价比极高的AI开发板,能够在预算内实现高效的AI开发和应用。
用户体验总体来说,香橙派AIpro的用户体验非常出色。无论是硬件性能、软件支持,还是扩展性和性价比,都表现得非常优异。特别是在部署和运行YOLOv5等深度学习模型时,操作简便、运行稳定,显示出其强大的计算能力和稳定性。

香橙派AIpro是一款高性能、高可靠性的开发板,适合各种人工智能和深度学习应用场景。其丰富的学习资源和强大的硬件配置使其成为AI开发者和爱好者的不二之选。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/370252.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method--论文笔记

论文笔记 资料 1.代码地址 https://github.com/iBelieveCJM/pseudo_label-pytorch 2.论文地址 3.数据集地址 论文摘要的翻译 本文提出了一种简单有效的深度神经网络半监督学习方法。基本上,所提出的网络是以有监督的方式同时使用标记数据和未标记数据来训练的…

ASCII码对照表(Matplotlib颜色对照表)

文章目录 1、简介1.1 颜色代码 2、Matplotlib库简介2.1 简介2.2 安装2.3 后端2.4 入门例子 3、Matplotlib库颜色3.1 概述3.2 颜色图的分类3.3 颜色格式表示3.4 内置颜色映射3.5 xkcd 颜色映射3.6 颜色命名表 4、Colorcet库5、颜色对照表结语 1、简介 1.1 颜色代码 颜色代码是…

2024亚太杯数学建模竞赛(B题)的全面解析

你是否在寻找数学建模比赛的突破点?数学建模进阶思路! 作为经验丰富的数学建模团队,我们将为你带来2024亚太杯数学建模竞赛(B题)的全面解析。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解…

数据库-MySQL 实战项目——书店图书进销存管理系统数据库设计与实现(附源码)

一、前言 该项目非常适合MySQL入门学习的小伙伴,博主提供了源码、数据和一些查询语句,供大家学习和参考,代码和表设计有什么不恰当还请各位大佬多多指点。 所需环境 MySQL可视化工具:navicat; 数据库:MySq…

MySQL:如何在已经使用的数据表中增加一个自动递增的字段

目录 一、需求 二、实现步骤 (一)数据表students (二)添加整型字段 (三)更新SID字段的值 1、使用用户定义的变量和JOIN操作 2、用SET语句和rownum变量 (1)操作方法 &#x…

使用antd的<Form/>组件获取富文本编辑器输入的数据

前端开发中,嵌入富文本编辑器时,可以通过富文本编辑器自身的事件处理函数将数据传输给后端。有时候,场景稍微复杂点,比如一个输入页面除了要保存富文本编辑器的内容到后端,可能还有一些其他输入组件获取到的数据也一并…

MySQL篇三:数据类型

文章目录 前言1. 数值类型1.1 tinyint类型1.2 bit类型1.3 小数类型1.3.1 float1.3.2 decimal 2. 字符串类型2.1 char2.2 varchar2.3 char和varchar比较 3. 日期类型4. enum和set 前言 数据类型分类: 1. 数值类型 1.1 tinyint类型 在MySQL中,整型可以指…

如何第一次从零上传项目到GitLab

嗨,我是兰若,今天想给大家说下,如何上传一个完整的项目到与LDAP集成的GitLab,也就是说这个项目之前是不在git上面的,这是第一次上传,这样上传上去之后,其他小伙伴就可以根据你这个项目的git地址…

自动批量将阿里云盘文件发布成WordPress文章脚本源码(以RiPro主题为例含付费信息下载地址SEO等自动设置)源码

背景 很多资源下载站,付费资源下载站,付费内容查看等都可以用WordPress站点发布内容,这些站点一般会基于一个主题,付费信息作为文章附属的信息发布,底层存储在WP表里,比如日主题,子比主题等。 …

2-5 softmax 回归的简洁实现

我们发现通过深度学习框架的高级API能够使实现线性回归变得更加容易。 同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。 本节如在上节中一样, 继续使用Fashion-MNIST数据集,并保持批量大小为256。 import torch from torc…

【基础篇】第4章 Elasticsearch 查询与过滤

在Elasticsearch的世界里,高效地从海量数据中检索出所需信息是其核心价值所在。本章将深入解析查询与过滤的机制,从基础查询到复合查询,再到全文搜索与分析器的定制,为你揭开数据检索的神秘面纱。 4.1 基本查询 4.1.1 Match查询…

多语言版在线出租车预订完整源码+用户应用程序+管理员 Laravel 面板+ 司机应用程序最新版源码

源码带PHP后台客户端源码 Flutter 是 Google 开发的一款开源移动应用开发 SDK。它用于开发 Android 和 iOS 应用,也是为 Google Fuchsia 创建应用的主要方法。Flutter 小部件整合了所有关键的平台差异,例如滚动、导航、图标和字体,可在 iOS 和…

如何在前端网页实现live2d的动态效果

React如何在前端网页实现live2d的动态效果 业务需求: 因为公司需要做机器人相关的业务,主要是聊天形式的内容,所以需要一个虚拟的卡通形象。而且为了更直观的展示用户和机器人对话的状态,该live2d动画的嘴型需要根据播放的内容来…

昇思25天学习打卡营第08天 | 模型训练

昇思25天学习打卡营第08天 | 模型训练 文章目录 昇思25天学习打卡营第08天 | 模型训练超参数损失函数优化器优化过程 训练与评估总结打卡 模型训练一般遵循四个步骤: 构建数据集定义神经网络模型定义超参数、损失函数和优化器输入数据集进行训练和评估 构建数据集和…

【Excel、RStudio计算T检测的具体操作步骤】

目录 一、基础知识1.1 显著性检验1.2 等方差T检验、异方差T检验1.3 单尾p、双尾p1.3.1 检验目的不同1.3.2 用法不同1.3.3 如何选择 二、Excel2.1 统计分析工具2.1.1 添加统计分析工具2.1.2 数据分析 2.2 公式 -> 插入函数 -> T.TEST 三、RStudio 一、基础知识 参考: 1.…

无人机运营合格证及无人机驾驶员合格证(AOPA)技术详解

无人机运营合格证及无人机驾驶员合格证(AOPA)技术详解如下: 一、无人机运营合格证 无人机运营合格证是无人机运营企业或个人必须获得的证书,以确保无人机在运营过程中符合相关法规和标准。对于无人机运营合格证的具体要求和申请…

【React】React18 Hooks之useState

目录 useState案例1(直接修改状态)案例2(函数式更新)案例3(受控表单绑定)注意事项1:set函数不会改变正在运行的代码的状态注意事项2:set函数自动批量处理注意事项3:在下次…

【反悔堆 优先队列 临项交换 决策包容性】630. 课程表 III

本文涉及知识点 贪心 反悔堆 优先队列 临项交换 Leetcode630. 课程表 III 这里有 n 门不同的在线课程,按从 1 到 n 编号。给你一个数组 courses ,其中 courses[i] [durationi, lastDayi] 表示第 i 门课将会 持续 上 durationi 天课,并且必…

E4.【C语言】练习:while和getchar的理解

#include <stdio.h> int main() {int ch 0;while ((ch getchar()) ! EOF){if (ch < 0 || ch>9)continue;putchar(ch);}return 0; } 理解上述代码 0-->48 9-->57 if行判断是否为数字&#xff0c;打印数字&#xff0c;不打印非数字

Selenium 切换 frame/iframe

环境&#xff1a; Python 3.8 selenium3.141.0 urllib31.26.19说明&#xff1a; driver.switch_to.frame() # 将当前定位的主体切换为frame/iframe表单的内嵌页面中 driver.switch_to.default_content() # 跳回最外层的页面# 判断元素是否在 frame/ifame 中 # 126 邮箱为例 # …