Face_recognition实现人脸识别

这里写自定义目录标题

  • 欢迎使用Markdown编辑器
    • 一、安装人脸识别库face_recognition
      • 1.1 安装cmake
      • 1.2 安装dlib库
      • 1.3 安装face_recognition
    • 二、3个常用的人脸识别案例
      • 2.1 识别并绘制人脸框
      • 2.2 提取并绘制人脸关键点
      • 2.3 人脸匹配及标注

欢迎使用Markdown编辑器

本文基于face_recognition库实现图像人脸识别,下面将介绍如何安装face_recognition库,并细述3个常用的人脸识别案例。

一、安装人脸识别库face_recognition

Face_recognition的安装不同于其他package,它需要依赖dlib库(dlib库的安装又依赖于cmake库),所以装face_recognition之前需要先安装前二者,整个安装过程还是挺耗费时间精力的。我的python环境是python3.7+Anaconda。

1.1 安装cmake

pip install cmake -i https://pypi.tuna.tsinghua.edu.cn/simple/

借助清华源的资源安装,通常下载速度会比较快,且不会中断。

1.2 安装dlib库

dlib-19.17.99-cp37-cp37m-win_amd64.whl 密码 79rt
下载后直接安装该whl文件

pip install dlib-19.17.99-cp37-cp37m-win_amd64.whl

直接在线pip install dlib,不知为何会报错,所以从网站上下载好安装包进行离线安装。

1.3 安装face_recognition

pip install face_recognition  -i https://pypi.tuna.tsinghua.edu.cn/simple/

二、3个常用的人脸识别案例

本章主要介绍face_recognition下3个常用的人脸识别方法及案例,它们所依赖的库函数如下:

import os
import face_recognition as fr
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import dlib
import numpy as np

2.1 识别并绘制人脸框

在这里插入图片描述其中,face_locations(img, number_of_times_to_upsample=1, model=“hog”) 方法为实现该demo的关键,该方法用于提取图像img中的人脸特征并返回所有人脸框坐标list。

def draw_face_rect(self):self.img = fr.load_image_file(pic)      # 读图#(1)识别人脸框所在坐标faces = fr.face_locations(self.img)     # 也可使用cnn识别# faces = fr.face_locations(self.img, number_of_times_to_upsample=0, model="cnn")#(2)创建展示结果的图像pil_img = Image.fromarray(self.img)draw = ImageDraw.Draw(pil_img)#(3)依次绘制人脸框for face in faces:top, right, bottom, left = facedraw.rectangle(((left, top), (right, bottom)), outline=(0,255,0))del drawplt.imshow(pil_img)plt.axis('off')plt.show()
  1. 入参img,必填,输入要求为图像阵列形式(numpy array);
  2. 入参number_of_times_to_upsample,default为1,设定上采样检测人脸的次数,数值越大越便于检测到更小的人脸;
  3. 入参model,default为’hog’,选择人脸检测模型。‘hog’即Histogram of Oriented Gradient(方向梯度直方图),它通过计算和统计图像局部区域的梯度方向直方图来构成特征,该方法精度略低但性能更快(仅使用CPU时);也可选用’cnn’ 即(卷积神经网络),cnn作为深度学习模型具有更高的识别精度,当然如果有GPU或CUDA环境加速的话更好;
  4. 返回值,人脸框坐标list,表示为[face_1, face_2, …face_n],其中每张人脸框包含的元组信息face_i = (top, right, bottom, left),即依次是人脸框的上、右、下、左坐标。

注意: 图2中还有好些没能识别到的人脸,个人感觉有两个原因:其一,人脸占比太小,脸部特征不明显导致无法提取到,比如右上角的双胞胎;另一,脸部肤色、亮度、细节等不符合正常人脸特征导致算法不认为是人脸,比如绿巨人和左下角的独眼。

2.2 提取并绘制人脸关键点

在这里插入图片描述
检测结果如上,其中红点代表face_recognition能提取到的人脸关键点(眼、眉、鼻、嘴、面部轮廓),实现代码如下

def draw_face_landmarks(self):face_marks = fr.face_landmarks(self.img)pil_img = Image.fromarray(self.img)draw = ImageDraw.Draw(pil_img)for face_mark in face_marks:for key in face_mark.keys():for pt in face_mark[key]:draw.ellipse(((pt[0]-4, pt[1]-4),(pt[0]+4, pt[1]+4)), outline=(255,0,0), width=6)del drawplt.imshow(pil_img)plt.axis('off')plt.show()
  1. 入参img,必填,输入要求为图像阵列形式(numpy array);
  2. 入参face_locations,default为None,表示可选择性的提供人脸坐标list用于check;
  3. 入参model,default为"large",用于选择"large"或"small"模型。其中"small"模型速度更快但是仅返回5个关键点;
  4. 返回值,所有人脸的关键点list。其中每张人脸landmarks为一个字典,具体键和值如下:
{"chin": points[0:17],
"left_eyebrow": points[17:22],
"right_eyebrow": points[22:27],
"nose_bridge": points[27:31],
"nose_tip": points[31:36],
"left_eye": points[36:42],
"right_eye": points[42:48],
"top_lip": points[48:55] + [points[64]] + [points[63]] + [points[62]] + [points[61]] + [points[60]],
"bottom_lip": points[54:60] + [points[48]] + [points[60]] + [points[67]] + [points[66]] + [points[65]] + [points[64]]}

其中face_landmarks(face_image, face_locations=None, model=“large”)方法为实现该demo的关键,该方法用于提取图像img中的人脸特征并返回所有人脸的关键点list.

2.3 人脸匹配及标注

在这里插入图片描述

检测结果如上,其中绿框代表算法识别到的人脸,框底部还标注了每个人物的名称(绿巨人一如既往地没识别出来),实现代码如下

def match_faces(self):faces = fr.face_locations(self.img)face_encodings = fr.face_encodings(self.img, faces)self.load_known_faces()pil_img = Image.fromarray(self.img)draw = ImageDraw.Draw(pil_img)for (top, right, bottom, left), cur_encoding in zip(faces, face_encodings):# matches = fr.compare_faces(self.encoding_list, cur_encoding)    name = 'unknown'# 计算已知人脸和未知人脸特征向量的距离,距离越小表示两张人脸为同一个人的可能性越大distances = fr.face_distance(self.encoding_list, cur_encoding)match_index = np.argmin(distances)if matches[match_index]:name = self.name_list[match_index]# 绘制匹配到的人脸信息draw.rectangle(((left, top), (right, bottom)), outline=(0, 255, 0))text_width, text_height = draw.textsize(name)font = ImageFont.truetype('arial.ttf', 20)draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=(0, 0, 255), outline=(0, 255, 0))draw.text((left + 5, bottom - text_height - 10), name, fill=(255, 255, 255, 255), font=font)del drawplt.imshow(pil_img)plt.axis('off')plt.show()

其中,face_encodings()、compare_faces()、face_distance()三个方法的释义如下:
(1) face_encodings()

完整形式为face_encodings(face_image, known_face_locations=None, num_jitters=1, model=“small”),用于提取图像face_image中的人脸特征,并返回每张人脸的128维人脸编码组成的list;

  1. 入参face_image,必填,输入要求为图像阵列形式(numpy array);

  2. 入参known_face_locations,default为None,表示可选择性的提供人脸坐标list用于check;

  3. 入参num_jitters,default为1,表示在计算人脸编码时需要重新采样计算的次数。数值越大采样次数越多、结果越精确,但是耗时越久;

  4. 返回值为所有人脸的128维人脸编码组成的list。

(2) compare_faces()

完整形式为compare_faces(known_face_encodings, face_encoding_to_check, tolerance=0.6),用于比较待确认的face_encoding与已知的known_face_encodings列表中各元素的匹配程度,并返回对应长度的布尔列表;

  1. 入参known_face_encodings,已知的人脸编码列表,本文在self.load_known_faces()方法中读取得到;

  2. 入参face_encoding_to_check,待check的人脸编码;

  3. 入参tolerance,default为0.6,定义两张人脸之间距离数值为多少时可用于表示图像匹配,通常数值越小表明匹配越严格,0.6为经验最优值;

  4. 返回值为待确认的face_encoding与已知的人脸编码列表中各元素的match结果列表,形式如[False, False, True, False, False]。

(3)face_distance()

完整形式为face_distance(face_encodings, face_to_compare),同compare_faces(),用于比较待比较的face_encoding与已知的face_encodings列表中各元素的匹配程度,并返回对应长度的数值列表;

  1. 入参face_encodings,已知的人脸编码列表;

  2. 入参face_to_compare,待check的人脸编码;

  3. 返回值为待确认的face_encoding与已知的人脸编码列表中各元素的match结果列表,形式如[0.79155519 0.74486473 0.45825189 0.78371348 0.99910555],各元素值范围为[0,1]。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/372183.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无法下载 https://mirrors./ubuntu/dists/bionic/main/binary-arm64/Packages

ubuntu系统执行sudo apt update命令的时候,遇到如下问题: 忽略:82 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-backports/universe arm64 Packages 错误:81 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-backports/main arm64 Packa…

Oracle 19c 统一审计表清理

zabbix 收到SYSAUX表空间告警超过90%告警,最后面给出的清理方法只适合ORACLE 统一审计表的清理,传统审计表的清理SYS.AUD$不适合,请注意。 SQL> Col tablespace_name for a30 Col used_pct for a10 Set line 120 pages 120 select total.…

Vue 3 中集成 ECharts(附一些案例)

Vue 3 中集成 ECharts 的完全指南 引言 在现代Web开发中,Vue 3以其卓越的性能和灵活的Composition API赢得了广泛的关注。而ECharts,作为开源的一个使用JavaScript实现的强大可视化库,以其丰富的图表类型和高度可定制性成为了数据可视化的首…

EAI四个层次服务-系统架构师(二十六)

1、(重点)系统应用集成提供了4个不同层次服务,最上层服务是()服务。 解析: EAI(Enterprise Application Integration)系统应用集成,相关概念。 实施EAI必须保证:应用程…

超详细版阿里云控制台环境配置+数据库配置

一、登录阿里云控制台 登录阿里云控制台,找到实例,切到阿里云服务器所在地址 🍭不知道自己的服务器地址在哪边也没有关系,随便选择一个,查询不到记录的话会有以下提示,可以根据提示进行切换(适…

贝叶斯估计(1):期末大乱炖

写在前面! 1 先验分布和后验分布 三种信息:总体信息、样本信息、先验信息 总体信息:“总体是正态分布”;样本信息:总体抽取的样本提供的信息,是最新鲜的信息;先验信息:在抽样之前就…

罗剑锋的C++实战笔记学习(二):容器、算法库、多线程

4、容器 1)、容器的通用特性 所有容器都具有的一个基本特性:它保存元素采用的是值(value)语义,也就是说,容器里存储的是元素的拷贝、副本,而不是引用 容器操作元素的很大一块成本就是值的拷贝…

DBA 数据库管理

数据库:存储数据的仓库 数据库服务软件: 关系型数据库: 存在硬盘 ,制作表格的 数据库的参数 [rootmysql50 ~]# cat /etc/my.cnf.d/mysql-server.cnf 主配置文件 [mysqld] datadir/var/lib/mysql 存放数据库目录…

浅谈信息技术高效课堂管理:策略、技巧与实践

引言: 在信息化教育的浪潮中,信息技术课程正逐渐成为学校教育体系中的重要组成部分。然而,信息技术课堂的特殊性——高互动性、高度依赖电子设备,给课堂管理带来了前所未有的挑战。如何在保证教学效率的同时,维护良好…

多端多商户自定义DIY商城小程序源码系统 前后端分离 带完整的安装代码包以及搭建教程

系统概述 在当今数字化时代,电子商务的发展日新月异,为了满足不断变化的市场需求和用户期望,我们自豪地推出了一款具有前瞻性的创新产品——多端多商户自定义 DIY 商城小程序源码系统。这款系统不仅具备前后端分离的先进架构,还配…

git 禁止dev合并到任何其他分支

创建 pre-merge-commit 钩子 导航到 Git 仓库的钩子目录: cd /path/to/your/repo/.git/hooks创建或编辑 pre-merge-commit 钩子: 也可以通过指令创建 nano pre-merge-commit在钩子文件中添加以下代码: #!/bin/sh# 获取当前分支名称 curr…

使用tcpdump抓取本本机的所有icmp包

1、抓取本机所有icmp包 tcpdump -i any icmp -vv 图中上半部分,是源主机tmp179无法ping通目标主机192.168.10.79(因为把该主机关机了)的状态,注意看,其中有unreachable 图中下半部分,是源主机tmp179可以p…

RIP环境下的MGRE网络

首先将LSP的IP地址进行配置 其他端口也进行同样的配置 将serial3/0/1配置25.0.0.2 24 将serial4/0/0配置35.0.0.2 24 将GE0/0/0配置45.0.0.2 24 进行第二步 R1与R5之间使用ppp的pap认证 在R5中进行配置 在aaa空间中创建账号和密码 将这个账号和密码使用在ppp协议中 然后…

什么是静态住宅代理?一文看懂它

静态住宅代理(也称为 ISP 代理)是最流行的代理类型之一。它们也是隐藏身份和在线匿名的最佳方式之一。但是您需要了解它们什么?是什么让它们如此特别?为什么您要使用住宅代理而不是仅仅使用常规代理服务?如果你感兴趣&…

移动的话费充值卡有什么用?

现在大部分人充话费都是直接用微信啊、支付宝啥的充 话费卡绑定麻烦不说,一些不太熟悉操作的人,对话费卡的使用方法更是头疼 这不前两天我刚用积分兑了几张移动的话费卡,绑定过程真的太麻烦了 最后还是在收卡云上卖出去了,这样…

周鸿祎数字分身亮相世界人工智能大会,应对“刁难提问”对答如流

近日,2024世界人工智能大会(WAIC)在上海举办,三六零集团(601360.SH,下称“360”)携多款大模型创新应用亮相全球顶尖盛会,以技术引擎、场景应用、安全赋能和产业联盟四大主题&#xf…

将QComboBox下拉项中的文本居中、居右

目录 1. 需求提出 2. 解决方法 1. 需求提出 QComboBox下拉项中的文本默认是居左的,如下: 有时需要将下拉项中的文本居中、居右。如何实现? 2. 解决方法 首先想到的是通过样式表来解决,但找遍Qt Assist和网络,都没这…

【Python学习笔记】菜鸟教程Scrapy案例 + B站amazon案例视频

背景前摇(省流可以跳过这部分) 实习的时候厚脸皮请教了一位办公室负责做爬虫这块的老师,给我推荐了Scrapy框架。 我之前学过一些爬虫基础,但是用的是比较常见的BeautifulSoup和Request,于是得到Scrapy这个关键词后&am…

Linux环境部署Python Web服务

“姑娘,再见面就要靠运气了,可别装作不认识,那句“好久不见”可干万别打颤…” 将使用 Python 编写的后端 API 部署到 Linux 环境中,可以按照以下详细步骤操作。本文将涵盖环境准备、API 编写、使用 Gunicorn 作为 WSGI 服务器、配…

磁致伸缩液位计的应用领域

磁致伸缩液位计作为一种高精度、高稳定性的液位测量设备,在众多行业中都有着广泛的应用。接下来,我们将从多个角度详细探讨磁致伸缩液位计在不同领域的应用情况。 石油化工行业 在石油化工行业中,磁致伸缩液位计主要用于储罐、反应器和管道等…