树莓派_Pytorch学习笔记20:初步认识深度学习框架

今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi)

本人所用树莓派4B 装载的系统与版本如下:

 版本可用命令 (lsb_release -a) 查询:

 Python 版本3.7.3:

本文很水,就介绍一下我以后的学习使用PC训练深度学习模型,然后给树莓派推理的开发想法

为何在PC端安装pytorch环境:

模型训练通常对硬件要求较高,但推理阶段对硬件的要求相对较低。这允许你将模型部署到各种边缘设备上,如树莓派。

使用树莓派进行PyTorch深度学习模型的训练,虽然技术上可行,但通常不是最优选择,主要因为树莓派的计算能力和内存资源相对有限。

因此,在更高性能的Windows电脑上先训练好模型,然后再将训练好的模型部署到树莓派上进行推理(即使用模型进行预测或分类等操作)的做法是非常提倡的,也是实际应用中常见的做法。

  1. 模型兼容性:确保在Windows上训练的模型能够无缝迁移到树莓派上。这通常不是问题,因为PyTorch模型是跨平台的,但你需要确保所有依赖库(如PyTorch本身)在树莓派上也是兼容的。
  2. 性能优化:虽然树莓派足以进行推理,但可能需要对模型进行量化或剪枝等优化措施,以进一步提高在树莓派上的运行效率。
  3. 数据传输:如果模型或数据集非常大,可能需要考虑如何将它们从Windows电脑传输到树莓派。确保有稳定且足够快的网络连接,或者使用外部存储设备(如USB驱动器)进行传输。
  • 选择合适的模型:根据树莓派的性能限制,选择适合在边缘设备上运行的模型。
  • 进行模型优化:在部署到树莓派之前,对模型进行必要的优化,如量化、剪枝等。
  • 使用容器化技术:考虑使用Docker等容器化技术来打包和部署模型,以确保在不同环境下的一致性和可移植性。
  • 测试与验证:在树莓派上充分测试模型,确保其在目标应用中的准确性和性能符合预期。

ONNX协议:

  • 模型转换:将不同框架(如PyTorch、TensorFlow、MXNet等)训练的模型转换为ONNX格式,以便在其他框架或硬件上部署。
  • 模型优化:利用ONNX Runtime等推理引擎对ONNX模型进行优化,提高模型的推理速度和效率。
  • 模型部署:将ONNX模型部署到各种硬件和平台上,包括云端、边缘设备和移动端等。

初步认识Pytorch:

GPU加速

GPU加速是通过将数据和模型从CPU转移到GPU来实现的,从而利用GPU的并行计算能力来加速深度学习模型的训练和推理过程。

示例: 定义俩个比较大的矩阵进行运算,分别使用CPU与GPU进行运算比较

GPU运行了俩次,第二次所用时间小于CPU:

自动求导

PyTorch的自动求导机制是训练神经网络时的一个核心概念,它使得计算梯度变得简单而高效。

常用网络层

PyTorch提供了丰富的网络层实现,包括全连接层、卷积层、池化层、激活函数层等。

深度学习训练过程:

把图像拆分成以为像素阵列

Pytorch 最全入门介绍,Pytorch入门看这一篇就够了-CSDN博客

 
 

匆匆结语:

没有实践的理论学习与查找资料真是枯燥无味......

配置个环境变量丝毫没有任何成就感,觉得很浪费时间...

网上学习资料贴出:

10分钟入门神经网络 PyTorch 手写数字识别_哔哩哔哩_bilibili

 文心一言

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/372291.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

R包:ggsci期刊配色

介绍 不同期刊配色大多数时候不一样,为了更好符合期刊图片颜色的配色,有人开发了ggsci这个R包。它提供以下函数: scale_color_palname() scale_fill_palname() 对应不同期刊的color和fill函数。 导入数据R包 library("ggsci")…

vue + element ui 实现侧边栏导航栏折叠收起

首页布局如下 要求点击按钮,将侧边栏收缩, 通过 row 和 col 组件&#xff0c;并通过 col 组件的 span 属性我们就可以自由地组合布局。 折叠前 折叠后 <template><div class"app-layout" :class"{ collapse: app.isFold }"><div class&…

CANoe的capl调用Qt制作的dll

闲谈 因为Qt封装了很多个人感觉很好用的库&#xff0c;所以一直想通过CAPL去调用Qt实现一些功能&#xff0c;但是一直没机会&#xff08;网络上也没看到这方面的教程&#xff09;&#xff0c;这次自己用了两天&#xff0c;踩了很多坑&#xff0c;终于是做成了一个初步的调用方…

Zabbix分布式监控

目录 分布式监控架构 实现分布式监控的步骤 优点和应用场景 安装Zabbix_Proxy Server端Web页面配置 测试 Zabbix 的分布式监控架构允许在大规模和地理上分散的环境中进行高效的监控。通过分布式监控&#xff0c;Zabbix 可以扩展其监控能力&#xff0c;支持大量主机和设备…

汇川CodeSysPLC教程 Modbus变量编址

线圈&#xff1a;位变量&#xff0c;只有两种状态0和1。汇川PLC中包含Q区及SM区等变量。 寄存器&#xff1a;16位&#xff08;字&#xff09;变量&#xff0c;本PLC中包含M区及SD区等变量 说明&#xff1a; 汇川HMI的专用协议使用不同功能码&#xff1a;在访问SM时&#xff0c…

Linux搭建hive手册

一、将hive安装包上传到NameNode节点并解压 1、删除安装MySQL时的.rpm文件 cd /opt/install_packages/ rm -rf *.rpm 2、将安装包拖进/install_packages目录 3、解压安装包 tar -zxvf apache-hive-3.1.2-bin.tar.gz -C /opt/softs/ 4、修改包名 cd /opt/softs mv apache-…

如何在应用运行时定期监控内存使用情况

如何在应用运行时定期监控内存使用情况 在 iOS 应用开发中&#xff0c;实时监控内存使用情况对于优化性能和排查内存泄漏等问题非常重要。本文将介绍如何在应用运行时定期监控内存使用情况&#xff0c;使用 Swift 编写代码并结合必要的工具和库。 1. 创建桥接头文件 首先&…

PyCharm如何安装requirements.txt中的依赖包

问题&#xff1a;下载别人的源码&#xff0c;如何安装代码中requirement.txt中的依赖包。 解决方案&#xff1a; &#xff08;1&#xff09;打开PyCharm下面的Terminal&#xff0c;先为代码创建单独的虚拟环境并进入到虚拟环境中&#xff08;每个项目单独的环境&#xff0c;这…

LLM- 注意力机制

一&#xff1a;什么是注意力机制&#xff0c;以及产生背景&#xff1f; &#xff08;1&#xff09;&#xff1a;RNN模型[RNN模型]的缺点&#xff1a;下图是例如RNN模型解决机器翻译的例子&#xff0c;从这个例子可以看到Encoder最后一个向量&#xff08;eos&#xff09;送给了…

bdeaver mysql忘记localhost密码修改密码添加用户

描述 bdeaver可以连接当前的localhost数据库&#xff0c;但不知道数据库密码是什么。用这个再建一个用户&#xff0c;用来连接数据库 解决 1、在当前的数据库localhost右键&#xff0c;创建-用户 设置这个用户&#xff0c;密码 加权限 2、连接 用新的账号密码去连接&#x…

Keepalived+LVS实现负责均衡,高可用的集群

Keepalived的设计目标是构建高可用的LVS负载均衡群集&#xff0c;可以调用ipvsadm工具来创建虚拟服务器&#xff0c;管理服务器池&#xff0c;而不仅仅用作双机热备。使用Keepalived构建LVS群集更加简便易用&#xff0c;主要优势体现在&#xff1a;对LVS负责调度器实现热备切换…

【购物车案例】for循环为什么使用key

要做出一个简单的购物车界面。首先&#xff0c;有一个复选框&#xff0c;可以选择商品&#xff0c;后面紧跟的是商品名称&#xff0c;然后&#xff0c;是删除按钮&#xff0c;根据这个需求&#xff0c;先写出一个简单的界面&#xff0c;代码如下&#xff1a; <template>…

1.8-word2vec的改进

文章目录 1问题分析一2改进一之Embedding层2.1 Embedding层的实际作用2.2数组切片获取某行的操作2.3 Embedding层的实现2.3.1初始化2.3.2前向计算2.3.3反向传播 3问题分析二4改进二之将多分类变为二分类4.1二分类问题4.1.1概率转换与损失计算4.1.2反向传播4.1.3多分类与二分类的…

2025 百度提前批校招内推

百度2025校园招聘内推开始啦&#xff0c;被推荐人可以免笔试直接面试&#xff0c;提前批结果不影响校招&#xff0c;机会1&#xff0c;还可直推心仪部门&#xff0c;可扫描下面二维码或点击链接进行投递&#xff0c;快来投递你心仪的职位吧&#xff08; 网申链接地址 &#xff…

【面向就业的Linux基础】从入门到熟练,探索Linux的秘密(十)-git(2)

下面是一些git的常用命令和基本操作&#xff0c;可以当做平常的笔记查询&#xff0c;用于学习&#xff01;&#xff01;&#xff01; 文章目录 前言 一、git 二、git常用命令 总结 前言 下面是一些git的常用命令和基本操作&#xff0c;可以当做平常的笔记查询&#xff0c;用于…

第十四届蓝桥杯省赛C++B组F题【岛屿个数】题解(AC)

题目大意 给定一个 01 地图&#xff0c;分别表示陆地和海&#xff0c;问地图中一共有多少块岛屿&#xff1f;另外&#xff0c;若一个岛屿在另一个岛屿的内部&#xff0c;则不统计。如下图中的大岛屿包含着内部的小岛屿&#xff0c;故内部小岛屿不计算&#xff0c;最终输出 1。…

小米引入OceanBase数据库,试点业务数据库性能实现2-3倍提升

近日&#xff0c;小米集团确认在部分业务系统上使用蚂蚁集团自主研发的OceanBase数据库。小米智能制造依托OceanBase所提供的原生分布式数据库能力&#xff0c;对试点业务系统进行升级&#xff0c;并已稳定运行数月&#xff0c;不仅确保了业务连续性&#xff0c;还实现了性能的…

Angular进阶之九: JS code coverage是如何运作的

环境准备 需要用到的包 node 18.16.0# Javascript 代码编辑"babel/core": "^7.24.7","babel/preset-env": "^7.24.7","babel-loader": "^9.1.3",# 打包时使用的 module&#xff0c; 给代码中注入新的方法# http…

【见刊通知】MVIPIT 2023机器视觉、图像处理与影像技术国际会议

MVIPIT 2023&#xff1a;https://ieeexplore.ieee.org/xpl/conhome/10578343/proceeding 入库Ei数据库需等20-50天左右 第二届会议征稿启动&#xff08;MVIPIT 2024&#xff09; The 2nd International Conference on Machine Vision, Image Processing & Imaging Techn…

解析Xml文件并修改QDomDocument的值

背景&#xff1a; 我需要解决一个bug&#xff0c;需要我从xml中读取数据到QDomDocument&#xff0c;然后获取到我想要的目标信息&#xff0c;然后修改该信息。 ---------------------------------------------------------------------------------------------------------…