tensorflow之欠拟合与过拟合,正则化缓解

过拟合泛化性弱

欠拟合解决方法:

        增加输入特征项

        增加网络参数

        减少正则化参数

过拟合的解决方法:

        数据清洗

        增大训练集

        采用正则化

        增大正则化参数

正则化缓解过拟合

正则化在损失函数中引入模型复杂度指标,利用给w增加权重,弱化数据集的噪声,loss = loss(y与y_) + REGULARIZER*loss(w)

模型中所有参数的损失函数,如交叉上海,均方误差

利用超参数REGULARIZER给出参数w在总loss中的比例,即正则化权重, w是需要正则化的参数

正则化的选择

L1正则化大概率会使很多参数变为0,因此该方法可通过系数参数,减少参数的数量,降低复杂度

L2正则化会使参数很接近0但不为0,因此该方法可通过减少参数值的大小降低复杂度 

with tf.GradientTape() as tape:h1 = tf.matul(x_train, w1) + b1h1 = tf.nn.relu(h1)y = tf.matmul(h1, w2) + b2loss_mse = tf.reduce_mean(tf.square(y_train - y))loss_ragularization = []loss_regularization.append(tf.nn.l2_loss(w1))loss_regularization.append(tf.nn.l2_loss(w2))loss_regularization = tf.reduce_sum(loss_regularization)loss = loss_mse + 0.03 * loss_regularization
variables = [w1, b1, w2, b2】
grads = tape.gradient(loss, variables)

生成网格覆盖这些点,会对每个坐标生成一个预测值,输出预测值为0.5的连成线,这个线就是红点和蓝点的分界线。

# 导入所需模块
import tensorflow as tf
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd# 读入数据/标签 生成x_train y_train
df = pd.read_csv('dot.csv')
x_data = np.array(df[['x1', 'x2']])
y_data = np.array(df['y_c'])x_train = x_data
y_train = y_data.reshape(-1, 1)Y_c = [['red' if y else 'blue'] for y in y_train]# 转换x的数据类型,否则后面矩阵相乘时会因数据类型问题报错
x_train = tf.cast(x_train, tf.float32)
y_train = tf.cast(y_train, tf.float32)# from_tensor_slices函数切分传入的张量的第一个维度,生成相应的数据集,使输入特征和标签值一一对应
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)# 生成神经网络的参数,输入层为4个神经元,隐藏层为32个神经元,2层隐藏层,输出层为3个神经元
# 用tf.Variable()保证参数可训练
w1 = tf.Variable(tf.random.normal([2, 11]), dtype=tf.float32)
b1 = tf.Variable(tf.constant(0.01, shape=[11]))w2 = tf.Variable(tf.random.normal([11, 1]), dtype=tf.float32)
b2 = tf.Variable(tf.constant(0.01, shape=[1]))lr = 0.005  # 学习率为
epoch = 800  # 循环轮数# 训练部分
for epoch in range(epoch):for step, (x_train, y_train) in enumerate(train_db):with tf.GradientTape() as tape:  # 记录梯度信息h1 = tf.matmul(x_train, w1) + b1  # 记录神经网络乘加运算h1 = tf.nn.relu(h1)y = tf.matmul(h1, w2) + b2# 采用均方误差损失函数mse = mean(sum(y-out)^2)loss_mse = tf.reduce_mean(tf.square(y_train - y))# 添加l2正则化loss_regularization = []# tf.nn.l2_loss(w)=sum(w ** 2) / 2loss_regularization.append(tf.nn.l2_loss(w1))loss_regularization.append(tf.nn.l2_loss(w2))# 求和# 例:x=tf.constant(([1,1,1],[1,1,1]))#   tf.reduce_sum(x)# >>>6loss_regularization = tf.reduce_sum(loss_regularization)loss = loss_mse + 0.03 * loss_regularization  # REGULARIZER = 0.03# 计算loss对各个参数的梯度variables = [w1, b1, w2, b2]grads = tape.gradient(loss, variables)# 实现梯度更新# w1 = w1 - lr * w1_gradw1.assign_sub(lr * grads[0])b1.assign_sub(lr * grads[1])w2.assign_sub(lr * grads[2])b2.assign_sub(lr * grads[3])# 每200个epoch,打印loss信息if epoch % 20 == 0:print('epoch:', epoch, 'loss:', float(loss))# 预测部分
print("*******predict*******")
# xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成间隔数值点
xx, yy = np.mgrid[-3:3:.1, -3:3:.1]
# 将xx, yy拉直,并合并配对为二维张量,生成二维坐标点
grid = np.c_[xx.ravel(), yy.ravel()]
grid = tf.cast(grid, tf.float32)
# 将网格坐标点喂入神经网络,进行预测,probs为输出
probs = []
for x_predict in grid:# 使用训练好的参数进行预测h1 = tf.matmul([x_predict], w1) + b1h1 = tf.nn.relu(h1)y = tf.matmul(h1, w2) + b2  # y为预测结果probs.append(y)# 取第0列给x1,取第1列给x2
x1 = x_data[:, 0]
x2 = x_data[:, 1]
# probs的shape调整成xx的样子
probs = np.array(probs).reshape(xx.shape)
plt.scatter(x1, x2, color=np.squeeze(Y_c))
# 把坐标xx yy和对应的值probs放入contour函数,给probs值为0.5的所有点上色  plt.show()后 显示的是红蓝点的分界线
plt.contour(xx, yy, probs, levels=[.5])
plt.show()# 读入红蓝点,画出分割线,包含正则化
# 不清楚的数据,建议print出来查看

存在过拟合现象,轮廓不够平滑, 使用l2正则化缓解过拟合

# 导入所需模块
import tensorflow as tf
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd# 读入数据/标签 生成x_train y_train
df = pd.read_csv('dot.csv')
x_data = np.array(df[['x1', 'x2']])
y_data = np.array(df['y_c'])x_train = x_data
y_train = y_data.reshape(-1, 1)Y_c = [['red' if y else 'blue'] for y in y_train]# 转换x的数据类型,否则后面矩阵相乘时会因数据类型问题报错
x_train = tf.cast(x_train, tf.float32)
y_train = tf.cast(y_train, tf.float32)# from_tensor_slices函数切分传入的张量的第一个维度,生成相应的数据集,使输入特征和标签值一一对应
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)# 生成神经网络的参数,输入层为4个神经元,隐藏层为32个神经元,2层隐藏层,输出层为3个神经元
# 用tf.Variable()保证参数可训练
w1 = tf.Variable(tf.random.normal([2, 11]), dtype=tf.float32)
b1 = tf.Variable(tf.constant(0.01, shape=[11]))w2 = tf.Variable(tf.random.normal([11, 1]), dtype=tf.float32)
b2 = tf.Variable(tf.constant(0.01, shape=[1]))lr = 0.005  # 学习率为
epoch = 800  # 循环轮数# 训练部分
for epoch in range(epoch):for step, (x_train, y_train) in enumerate(train_db):with tf.GradientTape() as tape:  # 记录梯度信息h1 = tf.matmul(x_train, w1) + b1  # 记录神经网络乘加运算h1 = tf.nn.relu(h1)y = tf.matmul(h1, w2) + b2# 采用均方误差损失函数mse = mean(sum(y-out)^2)loss_mse = tf.reduce_mean(tf.square(y_train - y))# 添加l2正则化loss_regularization = []# tf.nn.l2_loss(w)=sum(w ** 2) / 2loss_regularization.append(tf.nn.l2_loss(w1))loss_regularization.append(tf.nn.l2_loss(w2))# 求和# 例:x=tf.constant(([1,1,1],[1,1,1]))#   tf.reduce_sum(x)# >>>6loss_regularization = tf.reduce_sum(loss_regularization)loss = loss_mse + 0.03 * loss_regularization  # REGULARIZER = 0.03# 计算loss对各个参数的梯度variables = [w1, b1, w2, b2]grads = tape.gradient(loss, variables)# 实现梯度更新# w1 = w1 - lr * w1_gradw1.assign_sub(lr * grads[0])b1.assign_sub(lr * grads[1])w2.assign_sub(lr * grads[2])b2.assign_sub(lr * grads[3])# 每200个epoch,打印loss信息if epoch % 20 == 0:print('epoch:', epoch, 'loss:', float(loss))# 预测部分
print("*******predict*******")
# xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成间隔数值点
xx, yy = np.mgrid[-3:3:.1, -3:3:.1]
# 将xx, yy拉直,并合并配对为二维张量,生成二维坐标点
grid = np.c_[xx.ravel(), yy.ravel()]
grid = tf.cast(grid, tf.float32)
# 将网格坐标点喂入神经网络,进行预测,probs为输出
probs = []
for x_predict in grid:# 使用训练好的参数进行预测h1 = tf.matmul([x_predict], w1) + b1h1 = tf.nn.relu(h1)y = tf.matmul(h1, w2) + b2  # y为预测结果probs.append(y)# 取第0列给x1,取第1列给x2
x1 = x_data[:, 0]
x2 = x_data[:, 1]
# probs的shape调整成xx的样子
probs = np.array(probs).reshape(xx.shape)
plt.scatter(x1, x2, color=np.squeeze(Y_c))
# 把坐标xx yy和对应的值probs放入contour函数,给probs值为0.5的所有点上色  plt.show()后 显示的是红蓝点的分界线
plt.contour(xx, yy, probs, levels=[.5])
plt.show()# 读入红蓝点,画出分割线,包含正则化
# 不清楚的数据,建议print出来查看

python EmptyDataError No columns to parse from file sites:stackoverflow.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/373615.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

插入排序算法(C语言版)

直接插入排序 插入排序(insert sort)是一种简单的排序算法,它的工作原理与手动整理一副牌的过程非常相似。 具体来说,我们在未排序区间选择一个基准元素,将该元素与其左侧已排序区间的元素逐一比较大小,并…

【限时删!绝命Coding助力秋招】Python实现Boss海投脚本

hello hello~ ,这里是绝命Coding——老白~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页:绝命Coding-CSDN博客 &a…

GenAI 技术堆栈架构师指南 - 十种工具

这篇文章于 2024 年 6 月 3 日首次出现在 The New Stack 上。 我之前写过关于现代数据湖参考架构的文章,解决了每个企业面临的挑战——更多的数据、老化的Hadoop工具(特别是HDFS)以及对RESTful API(S3)和性能的更大需求…

YOLOv8改进 | 注意力机制 | 增强模型在图像分类和目标检测BAM注意力【小白必备 + 附完整代码】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效…

python破解密码·筛查和选择

破解密码时可能遇到的几种情况 ① 已知密码字符,破排序 ② 已知密码位数,破字符 ③ 已知密码类型,破字位 ④ 已知部分密码,破未知 ⑤ 啥都不知道,盲破,玩完 ⑥ 已知位数、字符、类型、部分密码中的几个&am…

AirPods Pro新功能前瞻:iOS 18的五大创新亮点

随着科技的不断进步,苹果公司一直在探索如何通过创新提升用户体验。iOS 18的推出,不仅仅是iPhone的一次系统更新,更是苹果生态链中重要一环——AirPods Pro的一次重大升级。 据悉,iOS 18将为AirPods Pro带来五项新功能&#xff0…

我的FPGA

1.安装quartus 2.更新usb blaster驱动 3.新建工程 1.随便找一个文件夹,里面新建demo文件夹,表示一个个工程 在demo文件夹里面,新建src(源码),prj(项目),doc&#xff…

mac安装配置cmake

本机是2015 macbook pro mid,已经有点老了,用homebrew下cmake老出问题 其实cmake官网安装也不麻烦 一、官网下载对应安装包 Download CMake 和所有dmg文件一样安装 二、改成命令行使用 一般来说 tutorial 给的都是命令行build 命令行的设置如下&am…

elasticsearch集群模式部署

系统版本:CentOS Linux release 7.9.2009 (Core) es版本: elasticsearch-7.6.2 本次搭建es集群为三个节点 添加启动用户 确保elasticsearch的启动用户为普通用户,这里我创建了es用户用于启动elasticsearch 执行命令为es用户添加sudo权限 v…

牛市中途深度调整,一览下半场值得关注的 Solana 生态五大潜力项目

近期有关加密货币的利空消息让市场行情一度陷入了恐慌之中,短期利空的落地也将伴随着接下来市场的蓄势。对于投资者来说,现在布局超跌潜力项目不失为一个不错的机会。作为本轮牛市值得关注的两大生态,Solana和TON的快速发展和吸金效应&#x…

探索东芝 TCD1304DG 线性图像传感器的功能

主要特性 高灵敏度和低暗电流 TCD1304DG 具有高灵敏度和低暗电流,非常适合需要精确和可靠图像捕捉的应用。传感器包含 3648 个光敏元件,每个元件尺寸为 8 m x 200 m,确保了出色的光灵敏度和分辨率。 电子快门功能 内置的电子快门功能是 T…

重生奇迹mu自带四重箭加穿透的弓

1.烈风射手 烈风射手是自带四重箭加穿透的弓之一。该职业的技能树中有一个叫做“四箭连发”的技能,可以让玩家在一次攻击中发射四支箭矢,每支箭矢都带有穿透效果。 2.影魅猎人 影魅猎人也是自带四重箭加穿透的弓之一。该职业的技能树中有一个叫做“穿…

springboot 旅游导航系统-计算机毕业设计源码69476

目 录 第 1 章 引 言 1.1 选题背景 1.2 研究现状 1.3 论文结构安排 第 2 章 系统的需求分析 2.1 系统可行性分析 2.1.1 技术方面可行性分析 2.1.2 经济方面可行性分析 2.1.3 法律方面可行性分析 2.1.4 操作方面可行性分析 2.2 系统功能需求分析 2.3 系统性需求分析…

linux服务器查询端口运行状态,以及防火墙打开指定端口

一:查询端口状态 在项目部署过程中,我们通常会使用nginx等进行转发操作,因此需要配置一些端口来进行跳转与访问, 1、netstat netstat -tuln | grep port 例如,你要查询8090的运行状态,则输入 netstat -tul…

地下水环评(一级)实践技术及Modflow地下水数值模拟

主要围绕的环评导则,结合不同行业类别,实例讲解地下水环境影响评价的原则、内容、工作程序、方法。包括数据处理分析、数值模型构建以及环评报告编写等。涉及地下水流场绘制软件(Surfer)的操作流程及数据处理、地下水数值模拟软件…

视频调色的技巧和方法 视频调色的操作步骤 视频调色用什么软件好免费 会声会影下载免费中文版

学会视频调色,就等于掌握了剪辑艺术的密码。视频调色不是为了画面好看,而是通过精心构思的色彩参数,向观众传达作品的情绪和内涵。普通剪辑师与剪辑高手之间的差距,就在于能否领悟视频调色的真谛。 一、视频调色有什么用 掌握混…

Ubuntu22.04.4系统/安装python3.9/pytorch/torchvision【GPU版】

1.安装python3.9 1.1 创建python3.9的虚拟环境 conda create -n QwenChat python3.9 1.2 输入“y” 1.3 创建成功 2.安装pytorch和torchvision 2.1 进入虚拟环境 进入刚刚创建的虚拟环境 conda activate QwenChat 2.2 conda安装 查看cuda的版本 浏览器打开网址PyTorch鼠标往…

Win-ARM联盟的端侧AI技术分析

Win-ARM联盟,端侧AI大幕将起 微软震撼发布全球首款AI定制Windows PC——Copilot PC,搭载全新NPU与重塑的Windows 11系统,纳德拉盛赞其为史上最快、最强、最智能的Windows PC。该设备算力需求高达40TOPS,支持语音翻译、实时绘画、文…

科普文:深入理解负载均衡(四层负载均衡、七层负载均衡)

概叙 网络模型:OSI七层模型、TCP/IP四层模型、现实的五层模型 应用层:对软件提供接口以使程序能使用网络服务,如事务处理程序、文件传送协议和网络管理等。(HTTP、Telnet、FTP、SMTP) 表示层:程序和网络之…

selenium采集招标网站公告

selenium采集招标网站公告 一、项目介绍二、采集过程三、完整代码一、项目介绍 本次数据采集以某市建设工程交易服务中心数据为例,网址为“http://www.shcpe.cn/jyfw/xxfw/u1ai51.html”,网站首页如下图所示: 采集到的字段如下图所示: 二、采集过程 本次数据采集使用的…