贴脸细看Mixtral 8x7B- 稀疏混合专家模型(MoE)的创新与推动

贴脸细看Mixtral 8x7B- 稀疏混合专家模型(MoE)的创新与推动

原创 一路到底孟子敬 上堵吟 2024年01月15日 20:05 美国

I. 引言

A. Mixtral 8x7B的背景和目的

• 背景:随着大型语言模型在自然语言处理(NLP)领域的广泛应用,模型的规模和性能不断增长,但同时也带来了计算资源和存储成本的挑战。为了在保持模型性能的同时,提高效率和可扩展性,研究者们探索了多种模型架构和技术。

• 目的:Mixtral 8x7B模型的开发旨在通过稀疏混合专家(MoE)架构,实现在保持或超越现有模型性能的同时,减少模型的活跃参数数量,从而提高推理速度和降低成本。

B. 稀疏混合专家(MoE)模型的基本概念

• 定义:稀疏混合专家模型是一种神经网络架构,它通过将模型的前馈网络(FFN)分解为多个专家网络,并通过一个路由机制来选择哪些专家参与当前输入的处理。

图片

• 核心思想:MoE模型通过在每个层级中只激活部分专家网络来处理输入,从而减少了每个输入标记所需的计算量。这种方法允许模型在保持大规模参数的同时,通过有效利用这些参数来提高性能。

• 优势:MoE模型通过这种稀疏激活机制,可以在不牺牲模型容量的情况下,实现更快的推理速度,这对于实时应用和资源受限的环境尤为重要。此外,MoE模型在多任务学习和迁移学习中也显示出了潜力,因为它可以为不同的任务或数据类型分配专门的专家网络。

II. Mixtral 8x7B的架构与创新

A. 与Mistral 7B的比较

• Mixtral 8x7B在架构上与Mistral 7B保持一致,但在专家网络的组织和使用上有所不同。Mistral 7B是一个标准的Transformer模型,而Mixtral 8x7B则引入了MoE架构,每个层级由8个专家组成,这些专家是独立的前馈网络。

• Mixtral 8x7B通过MoE架构实现了在保持模型大小不变的情况下,提高了模型的灵活性和效率,这在处理不同任务和数据类型时尤为重要。

B. 每个层级包含8个前馈块(专家)的设计

• 在Mixtral 8x7B中,每个Transformer层级被分解为8个独立的专家网络,每个专家网络负责处理输入数据的一部分。这种设计允许模型在每个层级上并行处理信息,从而提高了计算效率。

• 每个专家网络都有自己的参数集,但模型在推理时只会激活部分专家,这减少了所需的计算资源。

图片

C. 路由器网络在每个时间步选择专家的机制

• 路由器网络是MoE架构的关键组成部分,它负责在每个时间步为每个输入标记选择两个专家网络。这种选择基于输入标记的特征,通过一个门控网络来实现,该网络输出一个概率分布,指示哪些专家应该被激活。

• 路由器网络的设计使得模型能够动态地根据输入内容调整专家的激活,从而提高了模型的适应性和灵活性。

D. 参数使用效率:47B参数中的13B活跃参数

• 尽管Mixtral 8x7B模型拥有47B的总参数量,但在推理过程中,每个输入标记实际上只使用了13B的活跃参数。这种参数稀疏性使得模型在保持高性能的同时,大幅降低了计算成本和内存需求。

• 这种效率的提升对于在资源受限的环境下部署大型语言模型至关重要,它使得模型可以在更广泛的应用场景中发挥作用,包括移动设备和边缘计算。

III. Mixtral 8x7B的性能与效果

A. 在多语言理解、数学和代码生成任务中的卓越表现

• Mixtral 8x7B在多语言理解任务中表现出色,特别是在处理法语、德语、西班牙语和意大利语等语言时,其性能显著优于Llama 2 70B。

• 在数学任务中,Mixtral 8x7B展示了其强大的计算能力和对复杂数学概念的理解,这在GSM8K和MATH等数学基准测试中得到了验证。

• 在代码生成任务中,Mixtral 8x7B能够生成高质量的代码,这在Humaneval和MBPP等代码生成基准测试中得到了体现。

图片

B. 与Llama 2 70B和GPT-3.5的比较

• Mixtral 8x7B在多个基准测试中与Llama 2 70B和GPT-3.5进行了比较,结果显示Mixtral在大多数任务中都能匹配或超越这两个模型的性能。

• 尤其是在数学和代码生成任务中,Mixtral 8x7B的性能远远超过了Llama 2 70B,这表明MoE架构在这些领域具有显著的优势。

图片

C. Mixtral 8x7B – Instruct模型在遵循指令方面的改进

• Mixtral 8x7B – Instruct是一个经过指令微调的版本,它在遵循指令方面进行了优化,这在MT-Bench等人类评估基准测试中得到了验证。

• 通过监督微调和直接偏好优化(DPO),Mixtral 8x7B – Instruct在遵循指令和生成连贯对话方面表现出色,其性能超过了GPT-3.5 Turbo、Claude-2.1、Gemini Pro和Llama 2 70B – chat模型。

• 这种改进不仅提高了模型的实用性,还减少了偏见,提供了更平衡的情感分析,这在BBQ和BOLD等偏见基准测试中得到了体现。

 

图片

IV. MoE技术的推动效应

A. 提高模型的计算效率和推理速度

• MoE技术通过在每个时间步只激活部分专家网络,显著减少了模型在推理过程中的计算需求,从而提高了计算效率。

• 这种设计使得模型能够在保持性能的同时,减少所需的计算资源,这对于资源受限的环境尤其有益。

B. 在低批量大小下实现更快的推理速度

• 对于小批量输入,MoE模型能够快速地处理每个输入标记,因为每个标记只需要与少数专家网络交互,而不是整个模型。

• 这种特性使得MoE模型在处理小规模查询时能够提供快速响应,这对于需要实时交互的应用场景至关重要。

C. 在大批量大小下实现更高的吞吐量

• 在处理大量数据时,MoE模型可以通过并行化处理多个输入标记来提高吞吐量。每个专家网络可以独立地处理分配给它的标记,从而加速整体处理速度。

• 这种并行处理能力使得MoE模型在数据中心和云计算环境中特别有吸引力,因为它们可以有效地利用多核处理器和分布式计算资源。

D. 对多语言数据和长序列处理的改进

• MoE模型在处理多语言数据时表现出了优势,因为它可以为不同的语言分配专门的专家网络,从而提高模型在特定语言任务上的性能。

• 对于长序列数据,MoE模型通过在每个层级上只激活部分专家网络,有效地管理了模型的内存需求,使得模型能够处理更长的文本序列,而不会出现性能下降。

图片

V. 专家选择的分析

A. 专家选择的随机性与领域无关性

• 分析表明,专家选择在不同领域(如数学、生物学、哲学等)之间没有明显的模式,这表明专家选择过程在很大程度上是随机的,而不是基于领域特定的内容。

• 这种随机性可能意味着MoE模型在处理不同类型数据时能够保持一定的通用性,而不是过度依赖于特定领域的专家网络。

图片

B. 专家选择与语法结构的关联性

• 研究观察到,专家选择似乎更倾向于与语法结构相关,尤其是在模型的初始和最终层级。例如,连续的标记(如代码中的缩进标记)倾向于被分配给相同的专家。

• 这种关联性可能反映了MoE模型在处理语言时对语法结构的敏感性,这可能有助于模型更好地理解和生成语言。

图片

C. 时间局部性对模型训练和推理的影响

• 在模型的不同层级中,连续标记被分配给相同专家的比例有所不同,特别是在模型的中间层级,这种时间局部性更为明显。

• 时间局部性可能对模型的训练和推理有重要影响。在训练过程中,这种局部性可能导致某些专家网络的过载,而在推理过程中,这种局部性可以被用来优化模型的并行处理和缓存策略,从而提高效率。

图片

VI. 结论

A. Mixtral 8x7B在开放源码模型中达到的最新性能水平

• Mixtral 8x7B模型展示了MoE架构在开放源码模型中的潜力,它在多个基准测试中超越了现有的大型语言模型,如Llama 2 70B和GPT-3.5,同时使用了更少的活跃参数。

• 这一成就标志着MoE技术在提高模型效率和性能方面的一个重要里程碑,为未来的研究和应用奠定了基础。

B. 通过Apache 2.0许可的模型发布对研究和应用的促进

• 将Mixtral 8x7B模型及其变体发布在Apache 2.0许可下,有助于促进学术界和工业界的广泛研究和创新。

• 开放源码的模型使得研究人员可以自由地探索新的训练技术、微调策略和应用场景,同时也为开发者提供了一个强大的工具,用于构建各种语言处理应用。

C. MoE技术对未来语言模型发展的潜在影响

• MoE技术通过其在计算效率和性能上的优势,预示着未来大型语言模型的新发展方向。

• 随着MoE技术的进一步发展和优化,预计它将在多任务学习、跨语言理解和长序列处理等领域发挥更大的作用,推动自然语言处理技术的边界不断扩展。

论文:

arXiv:2401.04088v1 [cs.LG] 8 Jan 2024

代码和网页

Code: https://github.com/mistralai/mistral-src

Webpage: https://mistral.ai/news/mixtral-of-experts/

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/373756.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【java计算机毕设】基于java的奶茶店管理系统的设计与实现MySQL ssm JSP maven项目代码源码+文档

目录 1项目功能 2项目介绍 3项目地址 1项目功能 【java计算机毕设】奶茶店管理系统java MySQL ssm JSP maven项目源码代码万字文档 小组设计 2项目介绍 系统功能: 奶茶店管理系统包括管理员、用户俩种角色。 管理员功能包括个人中心模块用于修改个人信息和密码、…

游戏AI的创造思路-技术基础-情感计算(1)

游戏中的AI也是可以和你打情感牌的哦,不要以为NPC是没有感情的,不过,不要和NPC打过多的情感牌,你会深陷其中无法自拔的~~~~~~ 目录 1. 情感计算算法定义 2. 发展历史 3. 公式和函数 3.1. 特征提取阶段 TF-IDF(词频…

AJAX-个人版2.0

AJAX(Asynchronous Javascript And Xml) 传统请求及缺点 传统的请求都有哪些? 直接在浏览器地址栏上输入URL。点击超链接提交form表单使用JS代码发送请求 window.open(url)document.location.href urlwindow.location.href url… 传统请…

一键换衣,这个AI可以让你实现穿衣自由

基于图像的虚拟穿衣是一种流行且前景广阔的图像合成技术,能够显著改善消费者的购物体验,并降低服装商家的广告成本。顾名思义,虚拟穿衣任务旨在生成目标人穿着给定服装的图像。 OOTDiffusion简述 图1 虚拟换衣 基于图像的虚拟穿衣目前面临两…

系统分析师-基础知识

基础知识 一、计算机组成与结构1、计算机系统基础知识1.1 计算机硬件组成1.2 中央处理单元(CPU)1.3 数据表示1.3.1 R进制转十进制:1.3.2 十进制转R进制: 1.4 校验码(3种校验码)1.4.1 基本知识1.4.2 奇偶校验…

2024-07抖音/快手/小红书/视频号/美团无人直播技术:最新不封号无人直播的操作方法详细介绍

2024年最新研究出来的无人直播技术,目前不封号,用途大大的,可带货,可引流,可获客。 手机自动直播源码通常涉及到实时流媒体技术和应用开发,它涉及以下几个关键部分: 摄像头接入:使用…

vue3 学习笔记01 -- 搭建项目及基础配置

vue3 学习笔记01 – 搭建项目及基础配置 确保你已经安装了Node.js(建议使用最新的LTS版本) 搭建项目 初始化项目 如果选择npm创建项目再执行 npm create vitelatest my-vue3-app --template vue-ts使用yarn,如果电脑没有安装yarn cnpm i ya…

(一)、python程序--模拟电脑鼠走迷宫

一、绪论 1、简介 电脑鼠走迷宫是一种比赛,制作实物电脑鼠小车在迷宫找目标点,用时最短者获胜。考验参赛选手软硬件结合的能力。 2、走迷宫模拟软件中已实现功能 1、点击迷宫墙壁可编辑迷宫,并且可保存和加载迷宫形状文件; 2、…

无线麦克风哪个牌子的好,麦克风哪个品牌音质最好,热门款式推荐

​在当今这个数字化迅速发展的时代,无线领夹麦克风已经成为自媒体创作者、直播主播以及专业录音师不可或缺的工具。它们以其小巧便携、易于操作和出色的录音质量,极大地提升了音频录制的效率和质量。无论是户外探险的Vlog拍摄,还是室内直播的…

基于Android平台开发,天气预报APP

1.项目功能思维导图 2. 项目涉及到的技术点 数据来源:和风天气API使用okhttp网络请求框架获取api数据使用gson库解析json数据使用RecyclerViewadapter实现未来7天列表展示和天气指数使用PopupMenu 实现弹出选项框使用动画定时器实现欢迎页倒计时和logo动画使用Text…

解决IDEA每次新建项目都需要重新配置maven的问题

每次打开IDEA都要重新配置maven,这是因为在DEA中分为项目设置和全局设置,这个时候我们就需要去到全局中设置maven了。我用的是IntelliJ IDEA 2023.3.4 (Ultimate Edition),以此为例。 第一步:打开一个空的IDEA,选择左…

传知代码-多行人姿态检测系统

代码以及视频讲解 本文所涉及所有资源均在传知代码平台可获取 概述 本项目创新在于采用多级网络串联工作来进行目标的行为分析,并使用在视频监控领域,可部署在任何有需要的人员流动密集场所(如医院,机场,养老院等)或者用于空巢…

springboot三层架构详细讲解

目录 springBoot三层架构0.简介1.各层架构1.1 Controller层1.2 Service层1.3 ServiceImpl1.4 Mapper1.5 Entity1.6 Mapper.xml 2.各层之间的联系2.1 Controller 与 Service2.2 Service 与 ServiceImpl2.3 Service 与 Mapper2.4 Mapper 与 Mapper.xml2.5 Service 与 Entity2.6 C…

Java语言程序设计——篇三(1)

选择结构 概述选择单分支if语句例题讲解 双分支if-else语句例题讲解 条件运算符多分支的if-else语句例题讲解 嵌套的if语句例题讲解 switch语句结构例题讲解代码演示运行结果 概述 Java中的控制结构,包括: 1、选择结构( if、if-else、switch ) 2、循环结…

最佳 iPhone 解锁软件工具,可免费下载用于电脑操作的

业内专业人士表示,如果您拥有 iPhone,您一定知道忘记锁屏密码会多么令人沮丧。由于 Apple 的安全功能强大,几乎不可能在没有密码或 Apple ID 的情况下访问锁定的 iPhone。 “当我忘记密码时,如何在没有密码的情况下解锁iPhone&am…

Docker 部署 ShardingSphere-Proxy 数据库中间件

文章目录 Github官网文档ShardingSphere-Proxymysql-connector-java 驱动下载conf 配置global.yamldatabase-sharding.yamldockerdocker-compose.yml Apache ShardingSphere 是一款分布式的数据库生态系统, 可以将任意数据库转换为分布式数据库,并通过数…

Python 轻松生成多种条形码、二维码 (Code 128、EAN-13、QR code等)

条形码和二维码是现代信息交换和数据存储的重要工具,它们将信息以图形的形式编码,便于机器识别和数据处理,被广泛应用于物流、零售、医疗、教育等各领域。 本文将介绍如何使用Python快速生成各种常见的条形码如Code 128、EAN-13,…

20240711 每日AI必读资讯

🎨Runway Gen-3 Alpha 详细使用教程以及提示词指南大全 - 7月9日,著名生成式AI平台Runway在官网公布了,最新发布的文生视频模型Gen-3 Alpha的文本提示教程。 - 从技术层面来说,输入的文本提示会被转换成“向量”,这些…

滑动变阻器在实际应用中需要注意哪些安全事项?

滑动变阻器在实际应用中,为了确保其正常运作及保护电路安全,需要注意以下安全事项: 一、了解并遵守规格参数 最大电阻值和允许通过的最大电流值:使用前,必须清楚滑动变阻器的最大电阻值和允许通过的最大电流值&#x…

基于SAM的零样本相似性评价方法

文章目录 介绍方法SAM编码器相似性指标代码复现介绍 图像转换具有广泛的应用,如风格转换和模态转换,通常是生成具有高度真实和忠实的图像。这些问题仍然很困难,特别是在保存语义结构很重要的时候。传统的图像级相似性度量的用途有限,因为图像的语义是高级的,并且不受对原…