【机器学习】独立成分分析(ICA):解锁信号的隐秘面纱


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • 独立成分分析(ICA):解锁信号的隐秘面纱
    • 引言
    • ICA的基本概念
      • ICA与PCA的区别
    • ICA的原理
      • ICA的算法步骤
        • 数据预处理
          • 中心化
          • 白化
        • 独立性度量
          • 负熵
          • Kurtosis(峰度)
        • ICA算法实现
          • FastICA算法
    • ICA的应用
      • 音频信号分离
      • 生物医学信号处理
      • 图像处理
    • 结论

独立成分分析(ICA):解锁信号的隐秘面纱

在这里插入图片描述

引言

在当今数据驱动的世界中,信号处理和数据分析面临着前所未有的挑战。特别是在处理混合信号时,如何从复杂的混合体中分离出纯净的源信号,成为了研究的热点。独立成分分析(Independent Component Analysis,ICA)作为一种先进的信号处理技术,以其独特的理论基础和广泛的适用性,逐渐成为了信号分离和盲源分离领域的一颗璀璨明珠。本文旨在深入探讨ICA的原理、算法、应用及其与主成分分析(PCA)的区别,为读者提供一个全面的ICA视角。

ICA的基本概念

独立成分分析是一种统计和计算方法,用于估计和分离一组随机变量(或信号)的线性组合,即观测信号,以恢复其原本的、相互独立的源信号。ICA假设源信号是相互独立的,并且在统计上是非高斯的。这种假设使得ICA能够解决许多PCA无法解决的问题,尤其是在信号分离和盲源分离领域。

ICA与PCA的区别

  • 目标不同:PCA的目标是找到数据的主成分,即数据的正交基,其中第一个主成分具有最大的方差;而ICA的目标是找到源信号的独立成分,即使得输出信号的统计独立性最大化。
  • 数据假设不同:PCA假设数据服从高斯分布,而ICA则假设源信号是非高斯的,这是ICA能够成功分离信号的关键。
  • 应用领域不同:PCA广泛应用于数据降维和特征提取,而ICA主要用于信号分离和盲源分离,如音频信号分离、生物医学信号处理等。
    在这里插入图片描述

ICA的原理

ICA的基本思想是找到一个线性变换矩阵(\mathbf{W}),使得(\mathbf{W}\mathbf{X})中的信号分量尽可能独立。这里,(\mathbf{X})是观测信号矩阵,(\mathbf{W})是ICA要估计的变换矩阵。ICA通过最大化输出信号的非高斯性或统计独立性来实现这一目标。

ICA的算法步骤

数据预处理

在ICA的算法流程中,数据预处理是至关重要的第一步,主要包括中心化和白化两个步骤。

中心化

中心化是为了消除数据的均值影响,确保数据的均值为零。设 x \mathbf{x} x N N N维观测信号向量,其均值为 E [ x ] = μ \mathbb{E}[\mathbf{x}] = \mathbf{\mu} E[x]=μ,则中心化后的信号为:

x c = x − μ \mathbf{x_c} = \mathbf{x} - \mathbf{\mu} xc=xμ

白化

在这里插入图片描述

白化处理的目的是去除数据间的相关性,使得数据的协方差矩阵变为单位矩阵。设 C x = E [ x c x c T ] \mathbf{C_x} = \mathbb{E}[\mathbf{x_c}\mathbf{x_c}^T] Cx=E[xcxcT]为观测信号的协方差矩阵,白化变换可通过以下步骤完成:

  1. 计算 C x \mathbf{C_x} Cx的特征值分解:其中 U \mathbf{U} U是特征向量矩阵, Λ \mathbf{\Lambda} Λ是特征值对角矩阵。 C x = U Λ U T \mathbf{C_x} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T Cx=UT
  2. 构造白化矩阵
    W w h i t e n = U Λ − 1 2 U T \mathbf{W_{whiten}} = \mathbf{U}\mathbf{\Lambda}^{-\frac{1}{2}}\mathbf{U}^T Wwhiten=UΛ21UT
  3. 应用白化矩阵,得到白化后的数据 x w = W w h i t e n x c \mathbf{x_w} = \mathbf{W_{whiten}}\mathbf{x_c} xw=Wwhitenxc
独立性度量

ICA的核心在于寻找一个变换矩阵 W \mathbf{W} W,使得输出信号 s = W x w \mathbf{s} = \mathbf{W}\mathbf{x_w} s=Wxw的分量尽可能独立。为了度量信号的独立性,ICA采用非高斯性作为独立性的近似指标,因为独立的随机变量往往具有非高斯分布。常见的非高斯性度量包括负熵和kurtosis。

负熵

负熵 H \mathcal{H} H是衡量随机变量非高斯性的指标之一,定义为:

H [ s ] = − ∫ p ( s ) log ⁡ p ( s ) d s + const. \mathcal{H}[s] = -\int p(s) \log p(s) ds + \text{const.} H[s]=p(s)logp(s)ds+const.

其中, p ( s ) p(s) p(s)是随机变量(s)的概率密度函数。最大化输出信号的负熵,即寻找矩阵 W \mathbf{W} W使得 H [ s ] \mathcal{H}[\mathbf{s}] H[s]最大。

Kurtosis(峰度)

峰度是另一个常用的非高斯性度量,反映了数据分布的尖峭程度。对于随机变量(s),其峰度定义为:

kurt [ s ] = E [ ( s − E [ s ] ) 4 ] ( E [ ( s − E [ s ] ) 2 ] ) 2 − 3 \text{kurt}[s] = \frac{\mathbb{E}[(s-\mathbb{E}[s])^4]}{(\mathbb{E}[(s-\mathbb{E}[s])^2])^2} - 3 kurt[s]=(E[(sE[s])2])2E[(sE[s])4]3

在ICA中,我们通常最大化绝对值的四阶矩,即:

ICA objective = max ⁡ W ∑ i E [ ∣ s i ∣ 4 ] \text{ICA objective} = \max_W \sum_i \mathbb{E}[|s_i|^4] ICA objective=WmaxiE[si4]

ICA算法实现

ICA的算法实现通常涉及迭代优化,以最大化独立性度量。一种流行的ICA算法是FastICA,其核心是固定点迭代法,通过更新变换矩阵 W \mathbf{W} W,逐步逼近最优解。

FastICA算法

在这里插入图片描述

  1. 初始化:随机初始化 W \mathbf{W} W

  2. 更新规则:对于当前的 W \mathbf{W} W,更新规则为:

    w n e w = x w g ( W T x w ) − β W x w \mathbf{w}_{new} = \mathbf{x_w}g(\mathbf{W}^T\mathbf{x_w}) - \beta\mathbf{W}\mathbf{x_w} wnew=xwg(WTxw)βWxw

    其中, g g g是非线性函数, β \beta β是步长,通常设置为 E [ g ( W T x w ) 2 ] \mathbb{E}[g(\mathbf{W}^T\mathbf{x_w})^2] E[g(WTxw)2]

  3. 正则化:为了保持 w n e w \mathbf{w}_{new} wnew的单位范数,需进行正则化处理:

    w n e w = w n e w ∣ ∣ w n e w ∣ ∣ \mathbf{w}_{new} = \frac{\mathbf{w}_{new}}{||\mathbf{w}_{new}||} wnew=∣∣wnew∣∣wnew

  4. 迭代:重复步骤2和3,直至 W \mathbf{W} W收敛。

通过上述算法,我们最终能够获得一个变换矩阵 W \mathbf{W} W,使得输出信号 s = W x w \mathbf{s} = \mathbf{W}\mathbf{x_w} s=Wxw的分量尽可能独立,从而实现了ICA的目标。

ICA的应用

音频信号分离

ICA在音频信号分离中有着广泛的应用,例如,它可以用来分离混在一起的多个音乐乐器的声音,或者在嘈杂环境中分离出清晰的人声。

生物医学信号处理

在脑电图(EEG)、心电图(ECG)等生物医学信号处理中,ICA能够有效分离出大脑活动的独立成分,帮助研究人员更深入地理解大脑功能和疾病机理。

图像处理

ICA在图像处理中也有所应用,比如在图像去噪、纹理分析和颜色校正等方面,通过分离出图像的不同成分,可以提高图像的质量和分析精度。

结论

独立成分分析作为一种强大的信号处理工具,以其独特的能力在信号分离和盲源分离领域展现出了巨大的潜力。通过假设源信号的独立性和非高斯性,ICA能够有效地从复杂的混合信号中恢复出纯净的源信号,为信号处理和数据分析提供了新的视角和解决方案。在未来,随着算法的不断优化和计算能力的提升,ICA将在更多的领域发挥其独特的作用,为人类理解和利用复杂信号开辟新的道路。

End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/374277.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

若依 ruoyi-vue SpringBoot highlight-textarea 输入框敏感词关键词高亮标红(二)

参考文章,非常感谢大佬的分享 实现可高亮的输入框 — HighlightTextarea GitHub:highlight-textarea 可看作者上一篇文章 若依 ruoyi-vue SpringBoot聊天敏感词过滤sensitive-word(一) 效果图 审核时,输入框高亮敏感词&#xff…

vue3 + tsx 表格 Action 单独封装组件用法

前言 先上图看右侧列 action 的 UI 效果: 正常来说,如果一个表格的附带 action 操作,我们一般会放在最右侧的列里面实现,这个时候有些UI 框架支持在 SFC 模板里面定义额外的 solt,当然如果不支持,更通用的…

LabVIEW实现LED显示屏视觉检测

为了满足LED显示屏在生产过程中的严格质量检测需求,引入自动化检测系统是十分必要的。传统人工检测方式存在检测强度高、效率低、准确性差等问题,自动化检测系统则能显著提高检测效率和准确性。视觉检测系统的构建主要包含硬件和软件两个部分。 视觉系统…

新兴市场游戏产业爆发 传音以技术抢抓机遇 ​

随着年轻人口的增加以及互联网的普及,非洲、中东等新兴市场正迎来游戏产业的大爆发,吸引着全球游戏企业玩家在此开疆辟土。中国出海企业代表传音以新兴市场需求为中心,秉持本地化创新理念不断加强游戏等关键领域技术攻关凭借移动终端设备为全球玩家带来极致游戏体验,收获了消费…

谷粒商城实战笔记-26-分布式组件-SpringCloud-Gateway网关核心概念原理

微服务架构中,API网关扮演着至关重要的角色,它不仅作为微服务间的通信桥梁,还负责安全、监控、限流等职责。 一,网关的发展历程 SpringCloud的网关经历了两代的迭代和更替。 第一代网关是早期的Zuul,由 Netflix 开发…

kafka 消费者

消费者 消费者。消费者连接到Kafka上并接收消息,进而进行相应的业务逻辑处理。 消费组 消费者负责订阅Kafka中的主题,并且从订阅的主题上拉取消息。 消费组:每个消费者都有一个对应的消费组,每一个分区只能被一个消费组中的一个…

深入了解Rokid UXR2.0 SDK内置的Unity AR Glass开发组件

本文将了解到Rokid AR开发组件 一、RKCameraRig组件1.脚本属性说明2.如何使用 二、PointableUI组件1.脚本属性说明2.如何使用 三、PointableUICurve组件1.脚本属性说明2.如何使用 四、RKInput组件1.脚本属性说明2.如何使用 五、RKHand组件1.脚本属性说明2.如何使用3.如何禁用手…

昇思25天学习打卡营第17天|基于 MindSpore 实现 BERT 对话情绪识别

基于 MindSpore 实现 BERT 对话情绪识别 BERT介绍 BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer架构的预训练语言模型,由谷歌在2018年提出。从以下6个方面来介绍BERT: 1. 预训练和微调&…

Linux C语言基础 day8

目录 思维导图: 学习目标: 学习内容: 1. 字符数组 1.1 二维字符数组 1.1.1 格式 1.1.2 初始化 1.1.3 二维字符数组输入输出、求最值、排序 2. 函数 2.1 概念 关于函数的相关概念 2.2 函数的定义及调用 2.2.1 定义函数的格式 2.3…

GaussDB关键技术原理:高性能(五)

GaussDB关键技术原理:高性能(四)从USTORE存储引擎、计划缓存计划技术、数据分区与分区剪枝、列式存储和向量化引擎、SMP并行执行等五方面对高性能关键技术进行解读,本篇将从LLVM动态查询编译执行、SQL-BYPASS执行优化、线程池化、…

k8s核心操作_Ingress统一网关入口_域名访问配置_ingress域名转发规则配置_根据域名访问不同服务---分布式云原生部署架构搭建026

上一节我们已经把 ingress 安装好了可以看到 kubectl get svc -A 可以看到 出现了ingress-nginx 的service,在ingre-nginx这个命名空间中,有两个,一个是 ingress-nginx-controller 开了两个一个是对应http,一个对应https 一个是 ingress-nginx-controller-admission 对…

14.爬虫---Selenium 经典动态渲染工具的使用

14.Selenium 经典动态渲染工具的使用 1.查看chrome浏览器版本2.ChromeDriver 安装3.Selenium 安装4.验证安装5.基本用法5.1启动浏览器5.2导航到页面5.3查找元素5.3.1单个元素 find_element5.3.2多个元素 find_elements 5.4 执行操作5.5 动作链ActionChains5.6 执行 JavaScript …

修BUG:程序包javax.servlet.http不存在

貌似昨晚上并没有成功在tomcat上面运行,而是直接运行了网页。 不知道为啥又报错这个。。。 解决方案: https://developer.baidu.com/article/details/2768022 就整了这一步就行了 而且我本地就有这个tomcat就是加进去了。 所以说啊,是不是&a…

C语言 | Leetcode C语言题解之第227题基本计算题II

题目&#xff1a; 题解&#xff1a; int calculate(char* s) {int n strlen(s);int stk[n], top 0;char preSign ;int num 0;for (int i 0; i < n; i) {if (isdigit(s[i])) {num num * 10 (int)(s[i] - 0);}if (!isdigit(s[i]) && s[i] ! || i n - 1) {s…

二分法求函数的零点 信友队

题目ID&#xff1a;15713 必做题 100分 时间限制: 1000ms 空间限制: 65536kB 题目描述 有函数&#xff1a;f(x) 已知f(1.5) > 0&#xff0c;f(2.4) < 0 且方程 f(x) 0 在区间 [1.5,2.4] 有且只有一个根&#xff0c;请用二分法求出该根。 输入格式 &#xff08;无…

【Linux进阶】文件系统8——硬链接和符号连接:ln

在Linux下面的链接文件有两种&#xff0c; 一种是类似Windows的快捷方式功能的文件&#xff0c;可以让你快速地链接到目标文件&#xff08;或目录)&#xff1b;另一种则是通过文件系统的inode 链接来产生新文件名&#xff0c;而不是产生新文件&#xff0c;这种称为硬链接&…

sql注入时间盲注

基于时间的盲注 也叫延时注入。通过观察页面&#xff0c;既没有回显数据库内容&#xff0c;又没有报错信息也没有布尔类型状态&#xff0c;那么我们可以考虑用“绝招”--延时注入。延时注入就是根据页面的响应时间来判断是否存在注入&#xff0c;一点一点注入出数据库的信息。我…

HTML+CSS+JS 实现3D风吹草动效果(B站视频)

效果&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>3D effect&…

Python 爬虫与 Java 爬虫:相似之处、不同之处和选项

在信息时代&#xff0c;网络上可用的数据量巨大且不断增长。为了从这些数据中提取有用的信息&#xff0c;爬虫已成为一种重要的技术。Python 和 Java 都是流行的编程语言&#xff0c;都具有强大的爬虫功能。本文将深入探讨 Python 爬虫和 Java 爬虫之间的差异&#xff0c;以帮助…

PCIe驱动开发(1)— 开发环境搭建

PCIe驱动开发&#xff08;1&#xff09;— 开发环境搭建 一、前言 二、Ubuntu安装 参考: VMware下Ubuntu18.04虚拟机的安装 三、QEMU安装 参考文章&#xff1a;QEMU搭建X86_64 Ubuntu虚拟系统环境 四、安装Ubuntu 下载地址&#xff1a;https://old-releases.ubuntu.com…