线性代数|机器学习-P23梯度下降

文章目录

  • 1. 梯度下降[线搜索方法]
    • 1.1 线搜索方法,运用一阶导数信息
    • 1.2 经典牛顿方法,运用二阶导数信息
  • 2. hessian矩阵和凸函数
    • 2.1 实对称矩阵函数求导
    • 2.2. 线性函数求导
  • 3. 无约束条件下的最值问题
  • 4. 正则化
    • 4.1 定义
    • 4.2 性质
  • 5. 回溯线性搜索法

1. 梯度下降[线搜索方法]

我们之前经常用到的梯度下降,

1.1 线搜索方法,运用一阶导数信息

  • 迭代公式:
    x k + 1 = x k − s k ∇ f ( x k ) \begin{equation} x_{k+1}=x_k-s_k\nabla f(x_k) \end{equation} xk+1=xkskf(xk)
  • 步长: s k s_k sk,也叫学习率
  • 方向: − ∇ f ( x k ) -\nabla f(x_k) f(xk)负梯度方向

1.2 经典牛顿方法,运用二阶导数信息

详细推导请点击链接

  • 迭代公式:
    x k + 1 = x k − [ H j k ] − 1 ∇ f ( x ) \begin{equation} x_{k+1}=x_k-[H_{jk}]^{-1}\nabla f(x) \end{equation} xk+1=xk[Hjk]1f(x)
  • 步长: s k = 1 s_k=1 sk=1,把步长和方向结合起来放到方向里面去了。
  • 方向: hessian matrix 可逆时 [ H j k ] − 1 ∇ f ( x ) [H_{jk}]^{-1}\nabla f(x) [Hjk]1f(x)

2. hessian矩阵和凸函数

  • 如果hessian matrix H j k H_{jk} Hjk是半正定矩阵[positive semi-definite]或正定矩阵[positive definite]可得为函数是一般凸函数
  • 如果hessian matrix H j k H_{jk} Hjk是正定矩阵[positive definite]可得为函数是强凸函数

2.1 实对称矩阵函数求导

假设我们有一个实对称矩阵S和二次型函数表示如下:
S = [ 1 0 0 b ] , f ( x ) = 1 2 x T S x = 1 2 ( x 2 + b y 2 ) \begin{equation} S=\begin{bmatrix}1&0\\\\0&b\end{bmatrix},f(x)=\frac{1}{2}x^TSx=\frac{1}{2}(x^2+by^2) \end{equation} S= 100b ,f(x)=21xTSx=21(x2+by2)

  • 矩阵S的特征值,条件数 κ ( S ) \kappa(S) κ(S)分别表示如下,假设 b < 1 b<1 b<1
    λ max ⁡ = 1 , λ min ⁡ = b , κ ( S ) = 1 b \begin{equation} \lambda_{\max}=1,\lambda_{\min}=b,\kappa(S)=\frac{1}{b} \end{equation} λmax=1,λmin=b,κ(S)=b1
  • 通过 f ( x ) f(x) f(x)函数可以明显看出最小值点为(0,0)
    arg min ⁡ x ∗ = 0 f ( x ) = 0 \begin{equation} \argmin \limits_{x^*=0}f(x)=0 \end{equation} x=0argminf(x)=0
  • 函数一阶导数如下:
    d f ( x , y ) d X = d 1 2 X T S X d X = S X = [ 1 0 0 b ] [ x y ] = [ x b y ] \begin{equation} \frac{\mathrm{d}f(x,y)}{\mathrm{d}X}=\frac{\mathrm{d}\frac{1}{2}X^TSX}{\mathrm{d}X}=SX=\begin{bmatrix}1&0\\\\0&b\end{bmatrix}\begin{bmatrix}x\\\\y\end{bmatrix}=\begin{bmatrix}x\\\\by\end{bmatrix} \end{equation} dXdf(x,y)=dXd21XTSX=SX= 100b xy = xby
  • 函数二阶导数如下:
    d 2 f ( x , y ) d X 2 = S = [ 1 0 0 b ] \begin{equation} \frac{\mathrm{d}^2f(x,y)}{\mathrm{d}X^2}=S=\begin{bmatrix}1&0\\\\0&b\end{bmatrix} \end{equation} dX2d2f(x,y)=S= 100b

2.2. 线性函数求导

假设我们有如下函数:
f ( x , y ) = 2 x + 5 y = [ 2 5 ] [ x y ] = A T X , A = [ 2 5 ] \begin{equation} f(x,y)=2x+5y=\begin{bmatrix}2&5\end{bmatrix}\begin{bmatrix}x\\\\y\end{bmatrix}=A^TX,A=\begin{bmatrix}2\\\\5\end{bmatrix} \end{equation} f(x,y)=2x+5y=[25] xy =ATX,A= 25

  • 函数的一次导数如下:
    d f ( x , y ) d X = d A T X d X = A = [ 2 5 ] \begin{equation} \frac{\mathrm{d}f(x,y)}{\mathrm{d}X}=\frac{\mathrm{d}A^TX}{\mathrm{d}X}=A=\begin{bmatrix}2\\\\5\end{bmatrix} \end{equation} dXdf(x,y)=dXdATX=A= 25
  • 函数的二阶偏导 hessian matrix 如下:[向量对向量求导,XY拉伸术]
    H j k = [ 0 0 0 0 ] \begin{equation} H_{jk}=\begin{bmatrix}0&0\\\\0&0\end{bmatrix} \end{equation} Hjk= 0000
  • 对于函数 f ( x ) = 2 x + 5 y f(x)=2x+5y f(x)=2x+5y来说,依据线搜索方法,其负梯度方向为最佳迭代方向。

3. 无约束条件下的最值问题

假设我们有一个函数表示如下:
f ( x ) = 1 2 x T S x − a T x − b \begin{equation} f(x)=\frac{1}{2}x^TSx-a^Tx-b \end{equation} f(x)=21xTSxaTxb

  • f ( x ) f(x) f(x)导数如下:
    d f ( x ) d x = S x − a ; d 2 f ( x ) d x 2 = H j k = S \begin{equation} \frac{\mathrm{d}f(x)}{\mathrm{d}x}=Sx-a;\frac{\mathrm{d}^2f(x)}{\mathrm{d}x^2}=H_{jk}=S \end{equation} dxdf(x)=Sxa;dx2d2f(x)=Hjk=S
  • 函数 f ( x ) f(x) f(x)的最小值满足其一次导数为零,即表示如下:
    f ′ ( x ∗ ) = 0 , S x ∗ − a = 0 → x ∗ = S − 1 a \begin{equation} f'(x^*)=0,Sx^*-a=0\rightarrow x^*=S^{-1}a \end{equation} f(x)=0,Sxa=0x=S1a
  • 整理可得:
    f min ⁡ ( x ) = min ⁡ x = x ∗ = S − 1 a f ( x ) = − 1 2 a T S − 1 a − b \begin{equation} f_{\min}(x)=\min\limits_{x=x^*=S^{-1}a}f(x)=-\frac{1}{2}a^TS^{-1}a-b \end{equation} fmin(x)=x=x=S1aminf(x)=21aTS1ab
    arg min ⁡ x = x ∗ f ( x ) = S − 1 a \begin{equation} \argmin\limits_{x=x^*}f(x)=S^{-1}a \end{equation} x=xargminf(x)=S1a

4. 正则化

4.1 定义

  • Log-determinant regularization
    Log-determinant regularization 通过在损失函数中加入一个负对数行列式项来约束矩阵X的结构。具体形式为
    P e n a l t y = − log ⁡ ( det ⁡ ( X ) ) \begin{equation} Penalty=-\log(\det(X)) \end{equation} Penalty=log(det(X))
  • 其中X通常是一个正定矩阵, 这一正则化项有利于确保X的特征值远离零,从而避免数值不稳定性和病态矩阵的出现

4.2 性质

  • 凸性: − log ⁡ ( det ⁡ ( X ) ) -\log(\det(X)) log(det(X))是一个凸函数,这意味着优化问题中,局部最小值也是全局最小值
  • 梯度: ∇ f ( x ) = − X − 1 \nabla f(x)=-X^{-1} f(x)=X1
    f ( x ) = − log ⁡ ( det ⁡ ( X ) ) → d f ( x ) d x = 1 det ⁡ ( X ) ⋅ [ det ⁡ ( X ) ⋅ ( X − 1 ) T ] = X − 1 \begin{equation} f(x)=-\log(\det(X))\rightarrow \frac{\mathrm{d}f(x)}{\mathrm{d}x}=\frac{1}{\det(X)}\cdot [\det(X)\cdot (X^{-1})^T]=X^{-1} \end{equation} f(x)=log(det(X))dxdf(x)=det(X)1[det(X)(X1)T]=X1
  • hessian matrix
    H j k = X − 1 H X − 1 , H 是一个对称矩阵 \begin{equation} H_{jk}=X^{-1}HX^{-1},H是一个对称矩阵 \end{equation} Hjk=X1HX1H是一个对称矩阵

5. 回溯线性搜索法

对于线搜索方法来说,迭代公式如下,但是对于步长的选择来说,我们如果选择步长 s k s_k sk太大,那么就很容易越过极值点,在极值点不断跳跃和震荡,如果步长 s k s_k sk太小,那么迭代太慢,没有效果

  • 迭代公式:
    x k + 1 = x k − s k ∇ f ( x k ) \begin{equation} x_{k+1}=x_k-s_k\nabla f(x_k) \end{equation} xk+1=xkskf(xk)
  • 步长: s k s_k sk
  • 方向: 负梯度方向 − ∇ f ( x k ) -\nabla f(x_k) f(xk)

那么我们希望找到一个步长 s k s_k sk使得在搜索方向上使得 f ( x k + 1 ) f(x_{k+1}) f(xk+1)最小,这样就不是固定步长了,相当于动态步长
s k ∗ = arg min ⁡ s k f ( x k + 1 ) \begin{equation} s_k^*= \argmin\limits_{s_k} f(x_{k+1}) \end{equation} sk=skargminf(xk+1)

  • 步骤:先固定步长 s k = s 0 s_k=s_0 sk=s0,再取半步长 s k = 1 2 s 0 s_k=\frac{1}{2}s_0 sk=21s0,再取半步长 s k = 1 4 s 0 s_k=\frac{1}{4}s_0 sk=41s0,
  • 假设我们有如下一个损失函数如下:
    S = [ 1 0 0 b ] , f ( x ) = x T S x = x 2 + b y 2 \begin{equation} S=\begin{bmatrix}1&0\\\\0&b\end{bmatrix},f(x)=x^TSx=x^2+by^2 \end{equation} S= 100b ,f(x)=xTSx=x2+by2
  • 迭代公式如下:
    x k + 1 = x k − s k ∇ f ( x k ) , ∇ f ( x k ) = 2 S x \begin{equation} x_{k+1}=x_k-s_k\nabla f(x_k),\nabla f(x_k)=2Sx \end{equation} xk+1=xkskf(xk),f(xk)=2Sx
  • 向量化如下 : x = [ x , y ] T x\;=[x\;,y\;]^T x=[x,y]T
    [ x y ] k + 1 = [ x y ] k − s k [ 2 x 2 b y ] k \begin{equation} \begin{bmatrix}x\\\\y\end{bmatrix}_{k+1}=\begin{bmatrix}x\\\\y\end{bmatrix}_{k}-s_k\begin{bmatrix}2x\\\\2by\end{bmatrix}_{k} \end{equation} xy k+1= xy ksk 2x2by k
  • 假设我们定义初始点 p 0 = ( x 0 , y 0 ) = ( b , 1 ) p_0=(x_0,y_0)=(b,1) p0=(x0,y0)=(b,1)
  • 步长 s k = 1 x 0 + y 0 = 1 b + 1 s_k=\frac{1}{x_0+y_0}=\frac{1}{b+1} sk=x0+y01=b+11这里没弄懂,后续再研究,反推出来的
    x k = b ( b − 1 b + 1 ) k , y k = ( 1 − b 1 + b ) k , f k = ( 1 − b 1 + b ) k f 0 \begin{equation} x_k=b(\frac{b-1}{b+1})^k,y_k=(\frac{1-b}{1+b})^k,f_k=(\frac{1-b}{1+b})^kf_0 \end{equation} xk=b(b+1b1)k,yk=(1+b1b)k,fk=(1+b1b)kf0
  • 函数 f ( x ) = x 2 + b y 2 = c f(x)=x^2+by^2=c f(x)=x2+by2=c是一个椭圆形图像,随着c的变化不断变化,也就是做函数的最小值是之字型不断地趋近于最小,就像不同的椭圆进行等比缩小,最终求得最小值。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/375680.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android --- Kotlin学习之路:自己写一个SDK给别的APP用(暴漏一个接口,提供学生的身高数据)

今天又来肝kotlin了&#xff0c;主题是&#xff1a;用kt写一个SDK给其他人用&#xff0c;这个小技能在项目中会经常用到&#xff0c;应该有很多小伙伴还不会用&#xff0c;不会的请往下看—⬇ 在项目里面新建一个module 选择Android library&#xff0c;然后点击finish就行了 …

css横向滚动条支持鼠标滚轮

在做视频会议的时候&#xff0c;标准模式视图会有顶部收缩的一种交互方式&#xff0c;用到了横向滚动&#xff1b;一般情况下鼠标滚轮只支持竖向滚动&#xff0c;这次写个demo是适配横向滚动&#xff1b; 效果图展示 实现横向滚动条顶部显示 <div className{style.remote_u…

FakeNewsGPT4:通过知识增强的大规模视觉语言模型推进多模态假新闻检测

FakeNewsGPT4: Advancing Multimodal Fake News Detection through Knowledge-Augmented LVLMs 论文地址:https://arxiv.org/abs/2403.01988https://arxiv.org/abs/2403.01988 1.概述 当前,多模态假新闻的大量涌现导致了显著的分布差异,这一现状亟需我们开发具备广泛适用性…

OpenGL笔记一之基础窗体搭建以及事件响应

OpenGL笔记一之基础窗体搭建以及事件响应 总结自bilibili赵新政老师的教程 code review! 文章目录 OpenGL笔记一之基础窗体搭建以及事件响应1.运行2.目录结构3.main.cpp4.CMakeList.txt 1.运行 2.目录结构 01_GLFW_WINDOW/ ├── CMakeLists.txt ├── glad.c ├── main…

映美精黑白相机IFrameQueueBuffer转halcon的HObject

映美精黑白相机&#xff0c;用wpfhalcon开发取图 1.到官网下载&#xff0c;开发包 1sdk 2c开发例子 3c#开发例子 引入TIS.Imaging.ICImagingControl35.dll 3.ICImagingControl使用这个类控制相机 /// <summary> /// 相机控制 /// </summary> public ICImagingC…

使用DeepWalk 和Word2Vec实现单词Embedding

0、准备“边”数据集Wiki_edgelist import pandas as pddf pd.read_csv(./data/wiki/Wiki_edgelist.txt, sep , headerNone, names["source", "target"]) df.head() 1、读入 起点-终点 边数据&#xff0c;构建图 # 1、读入 起点-终点 边数据&#xff0c…

代码随想录-暑假算法第一天(数组篇)

代码随想录-暑假算法第一天(数组篇) 1. 二分查找 力扣题目链接(opens new window) 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xff0c;写一个函数搜索 nums 中的 target&#xff0c;如果目标值存在返回下标&#xff0c;否…

无人机之摄影及录像技术篇

无人机摄影和录像技术利用飞行器搭载的摄像机在空中进行拍摄&#xff0c;以捕捉独特的视角和高质量的图像。这种技术在多个领域得到应用&#xff0c;如新闻报道、电影制作和广告拍摄等。下面将具体介绍无人机摄影和录像的技术要点&#xff1a; 一、设备选择 无人机型号&#…

Intel 和 ARM 对ROP/COP/JOP的缓解措施

文章目录 前言一、ROP1.1 Intel1.2 ARM 二、COP/JOP2.1 Intel2.2 ARM 前言 前向转移(forward)&#xff1a;将控制权定向到程序中一个新位置的转移方式, 就叫做前向转移, 比如jmp和call指令。这里我们主要保护的间接跳转&#xff0c;间接跳转是运行时才知道函数地址&#xff0c…

Python数据分析-Excel和 Text 文件的读写操作

1.Excel和 Text 文件的读写操作 1. Text 文件读写包 import sys print(sys.argv[0]) print(__file__) print(sys.path[0]) qopen(sys.path[0] "\out.txt","w",encodingutf-8) q.write(这个是测试一下) q.close() print(done)open 语句可以打开的创建text…

Androidstudio安卓开发,SharedPreferences实现登录注册

1. 项目涉及到的技术点 SharedPreferences的使用 2. 效果图 3. 实现过程 注册布局文件&#xff1a;activity_register.xml <?xml version"1.0" encoding"utf-8"?> <androidx.appcompat.widget.LinearLayoutCompat xmlns:android"http:…

【密码学】消息认证

你发送给朋友一条消息&#xff08;内容&#xff1a;明天下午来我家吃饭&#xff09;&#xff0c;这一过程中你不想让除你朋友以外的人看到消息的内容&#xff0c;这就叫做消息的机密性&#xff0c;用来保护消息机密性的方式被叫做加密机制。 现在站在朋友的视角&#xff0c;某一…

css预编译器--sass

Sass Sass 提供了 变量&#xff08;variables&#xff09;、嵌套规则&#xff08;nested rules&#xff09;、 混合&#xff08;mixins&#xff09;、 函数&#xff08;functions&#xff09;&#xff0c;目前我使用最多的还是变量和嵌套规则&#xff0c;貌似目前css也支持嵌套…

华为HCIP Datacom H12-821 卷38

1.多选题 下面关于 BGP中的公认属性的描述&#xff0c;正确的是 A、公认必遵属性是所有BGP路由器都识别&#xff0c;且必须存在于Updata消息中心 B、BGP必须识别所有公认属性 C、公认属性分为公认必遵和可选过渡两种 D、公认任意属性是所有BGP造由器都可以识别&#xff0c…

第100+15步 ChatGPT学习:R实现Ababoost分类

基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言&#xff0c;不想学Python咯。 答曰&#xff1a;可&#xff01;用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了&#xff0c;就帮各位搬运一下吧。 二、R代码实现Ababoost分类 &#xff…

mybatis动态传入参数 pgsql 日期 Interval ,day,minute

mybatis动态传入参数 pgsql 日期 Interval 在navicat中&#xff0c;标准写法 SELECT * FROM test WHERE time > (NOW() - INTERVAL 5 day)在mybatis中&#xff0c;错误写法 SELECT * FROM test WHERE time > (NOW() - INTERVAL#{numbers,jdbcTypeINTEGER} day)报错内…

根据脚手架archetype快速构建spring boot/cloud项目

1、找到archetype&#xff0c;并从私仓下载添加archetype到本地 点击IDEA的file&#xff0c;选择new project 选择maven项目&#xff0c;勾选create from archetype 填写archetype信息&#xff0c;&#xff08;repository填写私仓地址&#xff09; 2、选择自定义的脚手架arche…

C++进阶:继承和多态

文章目录 ❤️继承&#x1fa77;继承与友元&#x1f9e1;继承和静态成员&#x1f49b;菱形继承及菱形虚拟继承&#x1f49a;继承和组合 ❤️多态&#x1fa77;什么是多态&#xff1f;&#x1f9e1;多态的定义以及实现&#x1f49b;虚函数&#x1f49a;虚函数的重写&#x1f499…

海外媒体发稿-全媒体百科

全球知名媒体机构 在全球范围内&#xff0c;有许多知名的新闻机构负责报道世界各地的新闻事件。以下是一些国外常见的媒体机构&#xff1a; AP&#xff08;美联社&#xff09;合众国际社&#xff08;UPI&#xff09;AFP(法新社)EFE&#xff08;埃菲通讯社&#xff09;Europa …

iPhone删除所有照片的高效三部曲

苹果手机用久了&#xff0c;系统缓存包括自己使用手机留下的内存肯定会越来越多。其中&#xff0c;相册中的照片数量可能会急剧增加&#xff0c;占据大量的存储空间。当用户们想要对相册进行彻底清理&#xff0c;实现iPhone删除所有照片时&#xff0c;不妨跟随以下详细的三部曲…