【Python】数据分析-Matplotlib绘图

数据分析

数据分析图片

Jupyter Notebook

  • Jupyter Notebook: 一款用于编程、文档、笔记和展示的软件。

启动命令:

jupyter notebook

Jupyter Notebook图片

Matplotlib

设置中文格式plt.rcParams['font.sans-serif'] = ['KaiTi']

# 查看本地所有字体
import matplotlib.font_manager
a = sorted([f.name for f in matplotlib.font_manager.fontManager.ttflist])
for i in a:print(i)

常用数据图

折线图

通过折线的上升或下降来表示统计数量的增减变化的统计图。

特点能够显示数据的变化趋势,反映事物的变化情况。变化

折线图图片

直方图

用一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据范围,纵轴表示分布情况。

特点绘制连续性的数据,展示一组或者多组数据的分布状况。统计

直方图图片

条形图

排列在工作表的列或行中的数据可以绘制成条形图。

特点绘制离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。统计

条形图图片

散点图

用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。

特点判断变量之间是否存在数量关联趋势,展示离群点。分布规律

散点图图片

折线图

折线图例子

每个红色的点是坐标,把5个点的坐标连接成一条线,组成了一个折线图。

折线图问题

目前存在以下几个问题:

  1. 设置图片大小(高清大图)
  2. 保存到本地
  3. 描述信息,如x轴和y轴表示什么,这个图表示什么
  4. 调整x或y的刻度间距
  5. 线条样式(颜色、透明度等)
  6. 标记特殊点(如最高点和最低点)
  7. 给图片添加水印(防伪、防盗用)
示例1
'''
假设一天中每隔两个小时(range(2, 26, 2))的气温(℃)分别是
'''
# 导包
from matplotlib import pyplot as plt# 设置图片大小
fig = plt.figure(figsize=(20, 8), dpi=80)# 设置x,y轴的值
x = range(2, 26, 2)
y = [15, 13, 14.5, 17, 20, 25, 26, 26, 27, 22, 18, 15]# 绘图
plt.plot(x, y)# 设置x轴刻度
plt.xticks(range(2, 26, 2))
plt.yticks(range(min(y), max(y) + 1))# 保存图片
# plt.savefig("./image.png") # .svg格式,放大无锯齿# 展示图形
plt.show()

示例1图片

示例2
import random
from matplotlib import pyplot as plt# 设置字体为楷体
plt.rcParams['font.sans-serif'] = ['KaiTi']x = range(0, 120)
y = [random.randint(20, 35) for _ in range(120)]# 设置图片大小
fig = plt.figure(figsize=(20, 10), dpi=180)# 绘图
plt.plot(x, y)# 调整x轴刻度
xl = ["10点{}分".format(i) for i in range(60)]
xl += ["11点{}分".format(i) for i in range(60)]
plt.xticks(list(x)[::5], xl[::5], rotation=45)  # rotation旋转的度数# 添加描述信息
plt.xlabel("时间", size=20)
plt.ylabel("温度(℃)", size=20)
plt.title("10点到12点每分钟的气温变化情况", size=40)# 展示图形
plt.show()

示例2图片

示例2图片2

多条折线

多次 plt.plot()

'''
统计出童某从11岁到30岁每年交的女朋友数量列表,将数据绘制成折线图
以及同桌从11岁到30岁交往数量做出数据折线图对比差距
'''from matplotlib import pyplot as pltfig = plt.figure(figsize=(20, 10), dpi=180)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.title("童某与其同桌从11岁到30岁每年交的女朋友数量图", size=30)x = range(11, 31)
y = [1, 3, 2, 3, 4, 4, 5, 6, 5, 4, 3, 3, 1, 1, 1, 4, 6, 4, 5, 3]
z = [1, 0, 3, 1, 2, 2, 3, 3, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1]# 绘制两条折线图
plt.plot(x, y, label="童某", color='red', linestyle='--', linewidth=2)
plt.plot(x, z, label="同桌", color='blue', linestyle='-.', linewidth=5)plt.ylabel("交往数量(个)", size=20)
plt.xlabel("年龄", size=20)
xl = ["{}岁".format(i) for i in x]
plt.xticks(x, xl)# 添加图例
plt.legend(loc=2)
''''best'            0'upper right'     1'upper left'      2'lower left'      3'lower right'     4'right'           5'center left'     6'center right'    7'lower center'    8'upper center'    9'center'          10
'''# 绘制网格
plt.grid(alpha=0.8, linestyle=':', linewidth=1, color='k')	# alpha设置网格
plt.show()

多条折线图图片

总结
  1. 绘制了折线图 (plt.plot)
  2. 设置了图片的大小和分辨率 (plt.figure)
  3. 实现了图片的保存 (plt.savefig)
  4. 设置了xy轴上的刻度和字符串 (plt.xticks)
  5. 解决了刻度稀疏和密集的问题 (plt.xticks)
  6. 设置了标题,xy轴的标签 (plt.title, plt.xlabel, plt.ylabel)
  7. 设置了字体 (plt.rcParams)
  8. 在一个图上绘制多个图形(多次 plt.plot
  9. 为不同的图形添加图例 (plt.legend)
颜色字符风格字符
r 红色- 实线
g 绿色– 虚线, 破折线
b 蓝色- . 点划线
w 白色: 点虚线, 虚线
c 青色‘’ 留空或空格, 无线条
m 洋红
y 黄色
k 黑色
#00ff00 16进制
0.8 灰度值字符串

散点图

'''
散点图假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),
那么此时如何寻找出气温和随时间(天)变化的某种规律?
'''
from matplotlib import pyplot as plty_3 = [11, 17, 16, 11, 12, 11, 12, 6, 6, 7, 8, 9, 12, 15, 14, 17, 18, 21, 16, 17, 20, 14, 15, 15, 15, 19, 21, 22, 22,22, 23]
y_10 = [26, 26, 28, 19, 21, 17, 16, 19, 18, 20, 20, 19, 22, 23, 17, 20, 21, 20, 22, 15, 11, 15, 5, 13, 17, 10, 11, 13,12, 13, 6]
x_3 = range(1, 32)
x_10 = range(41, 72)# 设置中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 设置图片大小
plt.figure(figsize=(20, 10), dpi=100)# 使用scatter方法绘制散点图
plt.scatter(x_3, y_3, label="3月份")
plt.scatter(x_10, y_10, label="10月份")# 调整x轴的刻度
xl = list(x_3) + list(x_10)  # 总数应当是两个月的天数而不是72
xlabels = ["3月{}日".format(i) for i in x_3]
xlabels += ["10月{}日".format(i) for i in x_10]
plt.xticks(xl[::3], xlabels[::3])# 添加描述信息
plt.xlabel("时间", size=20)
plt.ylabel("温度", size=20)
plt.title("北京2016年3,10月份每天白天的最高气温", size=30)# 添加图例
plt.legend()# 展示
plt.show()

image-20210704202855260

不同条件(维度)之间的内在关联关系
观察数据的离散聚合程度


条形图

image-20210704203128786

'''
柱状图假设你获取到了2017年内地电影票房前20的电影(列表a)和电影票房数据(列表b),那么如何更加直观的展示该数据?
'''
from matplotlib import pyplot as plt# 设置中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.figure(figsize=(20,10), dpi=100)a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章", "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ]
b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,6.86, 6.58, 6.23]# 通过bar方法绘制柱状图
plt.bar(a, b, width=0.5)# 调整x轴刻度
plt.xticks(rotation=35)plt.show()
绘制横排条形图
from matplotlib import pyplot as plt# 设置中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.figure(figsize=(20,10), dpi=100)a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸","加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章", "乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ]
b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,6.86, 6.58, 6.23]# 通过barh方法绘制条形图
plt.barh(a, b, height=0.5, color='c') # 粗细的调节和柱状图的不一样
plt.grid(alpha=0.5)plt.show()

image-20210704203406650

绘制分组条形图
'''
分组条形图假设你知道了列表a中电影分别在2017-09-14(b_14), 2017-09-15(b_15), 2017-09-16(b_16)
三天的票房,为了展示列表中电影本身的票房以及同其他电影的数据对比情况,应该如何更加直观的呈现该数据?
'''
from matplotlib import pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.title("四部电影在如下三天内的票房统计表", size=10)a = ["猩球崛起3:终极之战", "敦刻尔克", "蜘蛛侠:英雄归来", "战狼2"]
b_14 = [2358, 399, 2358, 362]
b_15 = [12357, 156, 2045, 168]
b_16 = [15746, 312, 4497, 319]bar_width = 0.2
x_14 = range(len(a)) #可迭代
x_15 = [i+bar_width for i in x_14] #遍历循环,每次位移bar_width
x_16 = [i+bar_width*2 for i in x_14]plt.bar(a, b_14, width=bar_width, label="9月14日")
plt.bar(x_15, b_15, width=bar_width, label="9月15日")
plt.bar(x_16, b_16, width=bar_width, label="9月16日")
# 设置图例
plt.legend()
# 设置网格线
plt.grid(alpha=0.5, linestyle=":")
plt.show()

image-20210704203522950

数量统计
频率统计(市场饱和度)


绘制直方图

image-20210704203834997

'''
直方图假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态
(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据?
'''
from matplotlib import pyplot as plta = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124,101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86,95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136, 123, 117, 119, 105, 137,123, 128, 125, 104, 109, 134, 125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115,132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,123, 107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127,115, 118, 112, 135, 115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134,106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126, 114, 140, 103,130, 141, 117, 106, 114, 121, 114, 133, 137, 92, 121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113, 134,106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146,133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]
plt.figure(figsize=(10, 10))# 计算组数
d = 3 #组距
nums_bin = (max(a)-min(a))//d
print(nums_bin)# 通过hist(数据,分成的组数)绘制直方图
plt.hist(a, nums_bin, density=True) # density统计频率分布plt.xticks(range(min(a), max(a)+d,d))
plt.grid(linestyle=":", alpha=0.8)
plt.show()

image-20210704204013222

'''
在美国2004年人口普查发现有124 million的人在离家相对较远的地方工作。
根据他们从家到上班地点所需要的时间,通过抽样统计(最后一列)出了下表的数据,这些数据能够绘制成直方图么?
'''
from matplotlib import pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.figure(figsize=(15, 10),dpi=100)
interval = [0,5,10,15,20,25,30,35,40,45,60,90]
width = [5,5,5,5,5,5,5,5,5,15,30,60]
quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47]plt.bar(range(len(quantity)), quantity, width=1)
# 设置x轴的刻度
_x = [i-0.5 for i in range(13)]
xl = interval+[150]
plt.xticks(_x, xl)plt.grid()
plt.show()

image-20210704204119175

img


通用配置

基本线条

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

最基本的线条

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.plot([1,2,3,4,5],[2,5,1,5,7])
plt.xlabel('x轴',size=15,color='red')
plt.ylabel('y轴',size=15,color='blue')

image-20210922095248805

不同的线条样式和颜色

plt.plot([1,2,3,4,5],[1,2,3,4,5],'-.')
plt.plot([1,2,3,4,5],[2,3,4,5,6],'--')
plt.plot([1,2,3,4,5],[3,4,5,6,7],': ')
plt.plot([1,2,3,4,5],[4,5,6,7,8],"o")
plt.title('测试',size=20)
plt.xlabel('x轴',size=15,color='r')
plt.ylabel('y轴',size=15,color='b')

image-20210922095429711

风格设置

import matplotlib.pyplot as plt
import numpy as np
plt.style.available['Solarize_Light2','_classic_test_patch','bmh','classic','dark_background','fast','fivethirtyeight','ggplot','grayscale','seaborn','seaborn-bright','seaborn-colorblind','seaborn-dark','seaborn-dark-palette','seaborn-darkgrid','seaborn-deep','seaborn-muted','seaborn-notebook','seaborn-paper','seaborn-pastel','seaborn-poster','seaborn-talk','seaborn-ticks','seaborn-white','seaborn-whitegrid','tableau-colorblind10']
x = np.linspace(-10,10)
y = np.sin(x)
plt.style.use('Solarize_Light2')
plt.plot(x,y)

image-20210922103505759

条形图

import numpy as np
import matplotlib
import matplotlib.pyplot as pltnp.random.seed(0) # 设置种子:起始值为0
x = np.arange(5)
y = np.random.randint(-5,5,5)
print(y)
fig,axes = plt.subplots(ncols=2)
v_bars = axes[0].bar(x,y,color='red')
h_bars = axes[1].barh(x,y,color='blue')axes[0].axhline(0,color='grey',linewidth=2)
axes[1].axvline(0,color='grey',linewidth=2)
plt.show()

image-20210922104700633

fig,ax = plt.subplots()
v_bars = ax.bar(x,y,color='blue')
for bar,height in zip(v_bars,y):if height < 0:bar.set(color='green')
plt.show()

image-20210922104749751

x = np.random.randn(100).cumsum()
y = np.arange(100)fig,ax = plt.subplots()
ax.fill_between(x,y)
plt.show()

image-20210922104826938

x1 = np.array([1,2,3])
x2 = np.array([3,2,2])bar_labels = ['bar1','bar2','bar3']
plt.figure(figsize=(8,6))
y_pos = [x for x in np.arange(len(x1))]plt.barh(y_pos,x1)
plt.barh(y_pos,-x2)
plt.show()

image-20210922105152105

g_data = [1,2,3]
b_data = [3,2,1]
r_data = [2,3,3]
labels = ['group1','group2','group3']pos = list(range(len(g_data)))
width = 0.2
fig,ax = plt.subplots()
plt.bar(pos,g_data,width,alpha=0.5,color='g',label=labels[0])
plt.bar([p+width for p in pos],b_data,width,alpha=0.5,color='b',label=labels[1])
plt.bar([p+width*2 for p in pos],r_data,width,alpha=0.5,color='r',label=labels[2])
plt.show()

image-20210922105242228

绘图细节

import matplotlib.pyplot as plt
import numpy as np
import mathx = np.random.normal(loc = 0.0, scale=1.0, size=300)
width = 0.5
bins = np.arange(math.floor(x.min())-width,math.ceil(x.max())+width,width)
ax = plt.subplot(111)# 边框不可见
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# 刻度不可见
plt.tick_params(bottom='off',top='off',left='off',right='off')
# 显示网格
plt.grid()
plt.hist(x,alpha = 0.5,bins = bins)
plt.show()

image-20210922140626739

x = range(10)
y = range(10)labels = ['dududududu' for i in range(10)]
fig,ax = plt.subplots()
plt.plot(x,y)
# 标签显示不全; rotation
ax.set_xticklabels(labels,rotation=90)

image-20210922140929065

x = np.arange(10)
for i in range(1,4):plt.plot(x,i*x**2,label = "Game %d"%i)
# 设置图例样式
plt.legend(loc='upper center',bbox_to_anchor = (0.5,1.15), ncol=3)

image-20210922141957059

x = np.arange(10)
for i in range(1,4):plt.plot(x,i*x**2,label = "Game %d"%i,marker='*')
# 设置图例透明度
plt.legend(loc='upper right',framealpha=0.1)

image-20210922142151749

直方图&散点图

直方图
import numpy as np
import matplotlib.pyplot as pltdata = np.random.normal(0,20,1000)
bins = np.arange(-100,100,5)plt.hist(data,bins=bins)
# 设置x轴的边距
plt.xlim([min(data)-5,max(data)+5])
plt.show()

image-20210922143212794

import random
data1 = [random.gauss(15,10) for i in range(500)]
data2 = [random.gauss(5,5) for i in range(500)]
bins = np.arange(-50,50,2.5)plt.hist(data1, bins=bins,label='class 1',alpha=0.3)
plt.hist(data2, bins=bins,label='class 2',alpha=0.3)
plt.show()

image-20210922143252495

散点图
mu_vecl = np.array([0,0])
cov_matl = np.array([[2,0],[0,2]])x1_samples = np.random.multivariate_normal(mu_vecl,cov_matl,100)
x2_samples = np.random.multivariate_normal(mu_vecl+0.2,cov_matl+0.2,100)
x3_samples = np.random.multivariate_normal(mu_vecl+0.4,cov_matl+0.4,100)plt.scatter(x1_samples[:,0],x1_samples[:,1],marker='^',label='x1')
plt.scatter(x2_samples[:,0],x1_samples[:,1],marker='o',label='x2')
plt.scatter(x3_samples[:,0],x1_samples[:,1],marker='*',label='x3')
plt.legend()
plt.show()

image-20210922144443303

x =[0.13,0.22,0.39,0.59,0.68,0.74,0.93]
y =[0.75,0.34,0.44,0.52,0.80,0.25,0.55]plt.scatter(x,y,marker='^',s=100)
# 添加坐标标注
for x,y in zip(x,y):plt.annotate('%s,%s'%(x,y),xy=(x,y),xytext=(0,-15),textcoords='offset points',ha='center')
plt.show()

image-20210922144541529

pie&子图布局

%matplotlib inline
import matplotlib.pyplot as pltm = 51212
f = 40742# 显示详细数据 '%1.1f%%'
plt.pie([m,f],autopct='%1.1f%%',explode=[0,0.05],labels=['man','woman'])

image-20210922144805409

ax1 = plt.subplot2grid((3,3),(0,0))
ax2 = plt.subplot2grid((3,3),(1,0))
ax3 = plt.subplot2grid((3,3),(0,2),rowspan=3)
ax4 = plt.subplot2grid((3,3),(2,0),colspan=2)
ax5 = plt.subplot2grid((3,3),(0,1),rowspan=2)

image-20210922144841390

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/376803.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hologres+Flink企业级实时数仓核心能力介绍

讲师&#xff1a;骆撷冬 Hologres PD 随着业务发展&#xff0c;业务对于时效性的要求在逐渐提升。各种场景都需要实时&#xff0c;例如春晚实时直播大屏、双11 GMV实时大屏、实时个性化推荐等等多种场景&#xff0c;都对数据的时效性有着非常高的要求。随着实时需求的发展&…

MT6816磁编码IC在工控机器人中的应用

在现代工业自动化领域&#xff0c;高精度的位置检测和控制技术对于机器人系统的稳定运行至关重要。MT6816磁编码IC作为一款先进的磁传感器解决方案&#xff0c;以其卓越的性能和稳定性&#xff0c;在工控机器人中得到了广泛的应用。本文将详细探讨MT6816磁编码IC在工控机器人中…

【python数据结构精讲】双端队列

通过总结《流畅的Python》等书中的知识&#xff0c;总结Python中常用工具的方法。 deque&#xff0c;学名双端队列。 1. 常用方法 append()&#xff1a;队列尾部添加appendleft()&#xff1a;队首添加pop()&#xff1a;移除队列最后一个元素popleft()&#xff1a;移除队列第一…

在lsb.resource中设置特定用户使用特定机器运行作业失效

问题配置如下所示&#xff1a; Resolution lsb.resources文件是用于定义和配置LSF的资源的&#xff0c;资源类型基本都是消耗型资源&#xff0c;需要定义谁去消耗这些资源&#xff08;&#xff08;如MEM、SLOTS、JOBS&#xff09;&#xff09;&#xff1b;这个“谁”也就是使用…

算法015:串联所有单词的子串

串联所有单词的子串. - 备战技术面试&#xff1f;力扣提供海量技术面试资源&#xff0c;帮助你高效提升编程技能,轻松拿下世界 IT 名企 Dream Offer。https://leetcode.cn/problems/substring-with-concatenation-of-all-words/ 如果是第一次接触这个题目&#xff0c;接触滑动…

NLP任务:情感分析、看图说话

我可不向其他博主那样拖泥带水&#xff0c;我有代码就直接贴在文章里&#xff0c;或者放到gitee供你们参考下载&#xff0c;虽然写的不咋滴&#xff0c;废话少说&#xff0c;上代码。 gitee码云地址&#xff1a; 卢东艺/pytorch_cv_nlp - 码云 - 开源中国 (gitee.com)https:/…

Android 儿童绘本/汉语拼音实现

有这样一个项目&#xff0c;开发一个电子绘本&#xff0c;需要在绘本上显示&#xff0c;汉语拼音。 界面布局 <androidx.core.widget.NestedScrollViewandroid:layout_width"match_parent"android:layout_height"match_parent"android:fillViewport&quo…

ENSP实现防火墙区域策略与用户管理

目录 实验拓扑与要求​编辑 交换机与防火墙接口的配置 交换机&#xff1a; 创建vlan 接口配置 防火墙配置及接口配置 防火墙IP地址配置 云配置​编辑​编辑​编辑 在浏览器上使用https协议登陆防火墙&#xff0c;并操作 访问网址&#xff1a;https://192.168.100.1:844…

Iceberg概念和特性

1. 快照 Iceberg会随着时间的推进,跟踪表生命周期中的所有数据集变化,并使用快照(Snapshots)来表示每一次变化后的数据集合,每一次数据操作的事务提交均会产生一个快照,并将其记录在元数据文件(Metadata)中。 基于快照的概念,Iceberg有以下特性: 事务性:写入快照成…

TS真的比JS更好吗?

前言 在讨论TypeScript&#xff08;TS&#xff09;是否比JavaScript&#xff08;JS&#xff09;更好时&#xff0c;我们需要明确“更好”这一概念的上下文和衡量标准。TypeScript和JavaScript在多个方面有着明显的区别&#xff0c;但它们并不是简单的“好”与“不好”的关系&a…

java实战项目-学生管理系统(附带全套源代码)--《基础篇》

一、前言 第一个java小型学生管理系统&#xff0c;思路和其他语言都一样&#xff0c;因为有C语言的基础&#xff0c;写这个并不是太难&#xff0c;不过&#xff0c;进阶篇的就难太多了。明天晚上更新进阶篇&#xff0c;因为目前代码还没有完善&#xff0c;保守估计需要500行代…

javaweb学习day5--《HTML篇》Springboot的模块创建、HTML的相关知识点详解

一、前言 从今天开始&#xff0c;就要启动后端的学习了&#xff0c;Springboot会贯穿到底&#xff0c;一定要跟着小编严谨的去搭建Springboot环境&#xff0c;依赖添加的过程可能需要2分钟左右&#xff0c;读者们要耐心等待一下&#xff0c;搭建好Springboot之后才算正式的开始…

【JavaWeb程序设计】Servlet(二)

目录 一、改进上一篇博客Servlet&#xff08;一&#xff09;的第一题 1. 运行截图 2. 建表 3. 实体类 4. JSP页面 4.1 login.jsp 4.2 loginSuccess.jsp 4.3 loginFail.jsp 5. mybatis-config.xml 6. 工具类&#xff1a;创建SqlSessionFactory实例&#xff0c;进行 My…

fortran简单排序算法,对一维、二维矩阵进行正序或倒序排序

fortran简单排序算法&#xff0c;对一维、二维矩阵进行正序或倒序排序 0. 引言1. 算法实现1.1 一维数组排序1.2 二维数组排序1.2 module文件 2. 结语 0. 引言 排序算法是计算机科学中的一项重要技术&#xff0c;它将一组数据按照特定的顺序排列起来。排序算法有很多种&#xff…

Three.js相机简明教程

相机校准是 3D 计算机图形学中的一个基本概念&#xff0c;涉及设置虚拟相机以模拟真实世界相机的视角和行为。在 Three.js&#xff08;一种流行的 3D 渲染 JavaScript 库&#xff09;中&#xff0c;了解相机校准对于创建逼真且身临其境的 3D 场景至关重要。在本文中&#xff0c…

2、ASPX、.NAT(环境/框架)安全

ASPX、.NAT&#xff08;环境/框架&#xff09;安全 源自小迪安全b站公开课 1、搭建组合&#xff1a; WindowsIISaspxsqlserver .NAT基于windows C开发的框架/环境 对抗Java xx.dll <> xx.jar 关键源码封装在dll文件内。 2、.NAT配置调试-信息泄露 功能点&#xf…

《Linux系统编程篇》Visual Studio Code配置下载,中文配置,连接远程ssh ——基础篇

引言 vscode绝对值得推荐&#xff0c;非常好用&#xff0c;如果你能体会其中的奥妙的话。 工欲善其事&#xff0c;必先利其器 ——孔子 文章目录 引言下载VS Code配置VS Code中文扩展连接服务器 连接服务器测试确定服务器的IP地址VS code 配置ssh信息选择连接到主机选择这个添…

【D3.js in Action 3 精译】1.3 D3 视角下的数据可视化最佳实践(下)

当前内容所在位置 第一部分 D3.js 基础知识 第一章 D3.js 简介 ✔️ 1.1 何为 D3.js&#xff1f;1.2 D3 生态系统——入门须知 1.2.1 HTML 与 DOM1.2.2 SVG - 可缩放矢量图形1.2.3 Canvas 与 WebGL1.2.4 CSS1.2.5 JavaScript1.2.6 Node 与 JavaScript 框架1.2.7 Observable 记事…

go-高效处理应用程序数据

一、背景 大型的应用程序为了后期的排障、运营等&#xff0c;会将一些请求、日志、性能指标等数据保存到存储系统中。为了满足这些需求&#xff0c;我们需要进行数据采集&#xff0c;将数据高效的传输到存储系统 二、问题 采集服务仅仅针对某个需求开发&#xff0c;需要修改…

Profibus协议转Profinet协议网关模块连接智能电表通讯案例

一、背景 在工业自动化领域&#xff0c;Profibus协议和Profinet协议是两种常见的工业通讯协议&#xff0c;而连接智能电表需要用到这两种协议之间的网关模块。本文将通过一个实际案例&#xff0c;详细介绍如何使用Profibus转Profinet模块&#xff08;XD-PNPBM20&#xff09;实…