聊聊常见的分布式ID解决方案


highlight: xcode

theme: vuepress

为什么要使用分布式ID?

随着 Web 开发技术的不断发展,单体的系统逐步走向分布式系统。在分布式系统中,使用分布式 ID(Distributed IDs)主要是为了在没有单点故障的情况下生成唯一标识符。这些唯一标识符在很多场景中非常重要,例如数据库记录的主键、消息队列中的消息ID、日志系统中的唯一事件ID等。使用分布式 ID 有以下几个主要原因:

  1. 唯一性:分布式系统中,各个节点可能同时生成 ID,如果不加以控制,可能会出现 ID 冲突。分布式ID 生成方案确保在整个系统中生成的 ID 都是唯一的。
  2. 可扩展性:分布式 ID 生成方案能够在分布式系统的不同节点上生成 ID,不会成为系统扩展的瓶颈。相比于集中式的 ID 生成方案(如数据库自增 ID),分布式 ID 方案能够更好地适应系统的扩展需求。
  3. 高可用性:分布式 ID 生成方案通常设计为无单点故障的结构,即使某些节点故障,其他节点仍然可以正常生成 ID,保证系统的高可用性。
  4. 性能:分布式 ID 生成方案通常具有低延迟、高并发的特点,能够满足分布式系统中高频次的ID生成需求。相比于依赖集中式数据库生成 ID,分布式 ID 生成在性能上有显著优势。
  5. 时间排序:有些分布式 ID 生成方案(如 Twitter 的 Snowflake)生成的 ID 具有时间排序的特性,即 ID 的大致顺序反映了生成的时间。这对于某些需要按时间顺序处理的数据非常有用。

常见的分布式ID解决方案

下面介绍一下常见的分布式 ID 解决方案,有一些只是作为了解,在工作中基本上用不到。

UUID

UUID(Universally Unique Identifier),通用唯一识别码。UUID 是基于当前时间、计数器(counter)和硬件标识(通常为无线网卡的 MAC 地址)等数据计算生成的。

UUID 由以下几部分的组合:

  • 当前日期和时间,UUID 的第一个部分与时间有关,如果你在生成一个 UUID 之后,过几秒又生成一个 UUID,则第一个部分不同,其余相同。
  • 时钟序列。
  • 全局唯一的 IEEE 机器识别号,如果有网卡,从网卡 MAC 地址获得,没有网卡以其他方式获得。

UUID 是由一组 32 位数的 16 进制数字所构成,以连字号分隔的五组来显示,形式为 8-4-4-4-12,总共有 36 个字符(即 32 个英数字母和 4 个连字号)。例如:

text aefbbd3a-9cc5-4655-8363-a2a43e6e6c80 xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx

在 Java 中,可以使用 UUID 类来生成 UUID:

java @Test public void testUuid() { UUID uuid = UUID.randomUUID(); System.out.println(uuid); } // 4996554d-e196-446a-80e4-330037825695

如果需求是只保证唯一性,那么 UUID 也是可以使用的,但是按照上面的分布式 ID 的要求, UUID 其实是不能做成分布式 ID 的,原因如下:

  1. 首先分布式 ID 一般都会作为主键,但是安装 MySQL 官方推荐主键要尽量越短越好,UUID 每一个都很长,所以不是很推荐。
  2. 既然分布式 ID 是主键,然后主键是包含索引的,然后 MySQL 的索引是通过 B+ 树来实现的,每一次新的UUID 数据的插入,为了查询的优化,都会对索引底层的 B+ 树进行修改,因为 UUID 数据是无序的,所以每一次 UUID 数据的插入都会对主键生成的 B+ 树进行很大的修改,这一点很不好。
  3. 信息不安全:基于 MAC 地址生成 UUID 的算法可能会造成 MAC 地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。

自增ID

针对表结构的主键,我们常规的操作是在创建表结构的时候给对应的 ID 设置 auto_increment,也就是勾选自增选项。

但是这种方式我们清楚在单个数据库的场景中我们是可以这样做的,但如果是在分库分表的环境下,直接利用单个数据库的自增肯定会出现问题。因为 ID 要唯一,但是分表分库后只能保证一个表中的 ID 的唯一,而不能保证整体的 ID 唯一。

image.png

上面的情况我们可以通过单独创建主键维护表来处理。

image.png

简单举一个例子。创建一个表:

sql CREATE TABLE `t_order_id` ( `id` bigint NOT NULL AUTO_INCREMENT, `title` char(1) NOT NULL, PRIMARY KEY (`id`), UNIQUE KEY `title` (`title`) ) ENGINE = InnoDB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8;

然后我们通过更新 ID 操作来获取 ID 信息:

```sql BEGIN;

REPLACE INTO torderid (title) values ('p') ; SELECT LASTINSERTID();

COMMIT; ```

但是这种方式还是很麻烦,不推荐。

数据库多主模式

单点数据库方式存在明显的性能问题,可以对数据库进行高可以优化,担心一个主节点挂掉没法使用,可以选择做双主模式集群,也就是两个 MySQL 实例都能单独生产自增的 ID。

查看主键自增的属性:

sql show variables like '%increment%'

image.png

我们可以设置主键自增的步长从 2 开始。

image.png

但是这种在并发量比较高的情况下,如何保证扩展性其实会是一个问题。在高并发情况下性能堪忧。

号段模式

号段模式是当下分布式 ID 生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增 ID,每次从数据库取出一个号段范围,例如 (1, 1000] 代表 1000 个ID,具体的业务服务将本号段,生成 1~1000 的自增 ID 并加载到内存。表结构如下:

sql CREATE TABLE id_generator ( id int(10) NOT NULL, max_id bigint(20) NOT NULL COMMENT '当前最大id', step int(20) NOT NULL COMMENT '号段的布长', biz_type int(20) NOT NULL COMMENT '业务类型', version int(20) NOT NULL COMMENT '版本号', PRIMARY KEY (`id`) )

  • max_id:当前最大的可用 id。
  • step:代表号段的长度。
  • biz_type:代表不同业务类型。
  • version:是一个乐观锁,每次都更新 version,保证并发时数据的正确性。

等这批号段 ID 用完,再次向数据库申请新号段,对 max_id 字段做一次 update 操作: update max_id = max_id + step,update 成功则说明新号段获取成功,新的号段范围是(max_id, max_id + step]

image.png

image.png

由于多业务端可能同时操作,所以采用版本号 version 乐观锁方式更新,这种分布式 ID 生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。但同样也会存在一些缺点比如:服务器重启,单点故障会造成 ID 不连续。

使用Redis生成

基于全局唯一 ID 的特性,我们可以通过 Redis 的 INCR 命令来生成全局唯一 ID。

同样使用 Redis 也有对应的缺点:

  • ID 生成的持久化问题,如果 Redis 宕机了怎么进行恢复。
  • 单个节点宕机问题。

当然针对故障问题我们可以通过 Redis 集群来处理,比如我们有三个 Redis 的 Master 节点。可以初始化每台 Redis 的值分别是 1,2,3。然后分别把分布式 ID 的 KEY 用 Hash Tags 固定每一个 Master 节点,步长就是 Master 节点的个数。各个 Redis 生成的 ID 为:

text A: 1, 4, 7 B: 2, 5, 8 C: 3, 6, 9

优点:

  • 不依赖于数据库,灵活方便,且性能优于数据库
  • 数字 ID 有序,对分页处理和排序都很友好
  • 防止了 Redis 的单机故障。

缺点:

  • 如果没有 Redis 中间件,需要安装配置,增加复杂度。
  • 集群节点确定是 3 个后,后面调整不是很方便。

Redis 分布式 ID 生成器实例代码,结合 Spring Boot 实现:

```java /** * Redis 分布式ID生成器 */ @Component public class RedisDistributedId {

@Autowired
private StringRedisTemplate redisTemplate;private static final long BEGIN_TIMESTAMP = 1659312000l;/*** 生成分布式ID* 符号位    时间戳[31位]  自增序号【32位】* @param item* @return*/
public long nextId(String item) {// 1. 生成时间戳LocalDateTime now = LocalDateTime.now();// 格林威治时间差long nowSecond = now.toEpochSecond(ZoneOffset.UTC);// 我们需要获取的 时间戳 信息long timestamp = nowSecond - BEGIN_TIMESTAMP;// 2. 生成序号 从Redis中获取// 当前当日期String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));// 获取对应的自增的序号Long increment = redisTemplate.opsForValue().increment("id:" + item + ":" + date);return timestamp << 32 | increment;
}

} ```

雪花算法

Snowflake,雪花算法是由 Twitter 开源的分布式 ID 生成算法,以划分命名空间的方式将 64 bit 位分割成了多个部分,每个部分都有具体的不同含义,在 Java 中 64 Bit 位的整数是 long 类型,所以在 Java 中 Snowflake 算法生成的 ID 就是 long 来存储的。具体如下:

d8bd4b48def44f81a03cb399a6775733.png

  • 第一部分:占用 $1$ bit,第一位为符号位,不用。
  • 第二部分:$41$ 位的时间戳,41 bit 位可以表示 $2^{41}$ 个数,每个数代表的是毫秒,那么雪花算法的时间年限是 $2^{41} / (1000×60×60×24×365) = 69$ 年
  • 第三部分:$10$ bit 表示是机器数,即 $2^{10} = 1024$ 台机器,通常不会部署这么多机器
  • 第四部分:$12$ bit 位是自增序列,可以表示 $2^{12} = 4096$ 个数,一秒内可以生成 $4096$ 个 ID

示例代码:

```java package org.codeart.utils;

/** * Twitter_Snowflake * SnowFlake的结构如下(每部分用-分开): * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0 * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69 * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号 * 加起来刚好64位,为一个Long型。 * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。 */ public class SnowflakeIdWorker {

// ==============================Fields===========================================/*** 开始时间截 (2020-11-03,一旦确定不可更改,否则时间被回调,或者改变,可能会造成id重复或冲突)*/
private final long twepoch = 1604374294980L;/*** 机器id所占的位数*/
private final long workerIdBits = 5L;/*** 数据标识id所占的位数*/
private final long datacenterIdBits = 5L;/*** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)*/
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);/*** 支持的最大数据标识id,结果是31*/
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);/*** 序列在id中占的位数*/
private final long sequenceBits = 12L;/*** 机器ID向左移12位*/
private final long workerIdShift = sequenceBits;/*** 数据标识id向左移17位(12+5)*/
private final long datacenterIdShift = sequenceBits + workerIdBits;/*** 时间截向左移22位(5+5+12)*/
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;/*** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)*/
private final long sequenceMask = -1L ^ (-1L << sequenceBits);/*** 工作机器ID(0~31)*/
private long workerId;/*** 数据中心ID(0~31)*/
private long datacenterId;/*** 毫秒内序列(0~4095)*/
private long sequence = 0L;/*** 上次生成ID的时间截*/
private long lastTimestamp = -1L;//==============================Constructors=====================================/*** 构造函数*/
public SnowflakeIdWorker() {this.workerId = 0L;this.datacenterId = 0L;
}/*** 构造函数* @param workerId     工作ID (0~31)* @param datacenterId 数据中心ID (0~31)*/
public SnowflakeIdWorker(long workerId, long datacenterId) {if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}this.workerId = workerId;this.datacenterId = datacenterId;
}// ==============================Methods==========================================/*** 获得下一个ID (该方法是线程安全的)* @return SnowflakeId*/
public synchronized long nextId() {long timestamp = timeGen();//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常if (timestamp < lastTimestamp) {throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}//如果是同一时间生成的,则进行毫秒内序列if (lastTimestamp == timestamp) {sequence = (sequence + 1) & sequenceMask;//毫秒内序列溢出if (sequence == 0) {//阻塞到下一个毫秒,获得新的时间戳timestamp = tilNextMillis(lastTimestamp);}}//时间戳改变,毫秒内序列重置else {sequence = 0L;}//上次生成ID的时间截lastTimestamp = timestamp;//移位并通过或运算拼到一起组成64位的IDreturn ((timestamp - twepoch) << timestampLeftShift) //| (datacenterId << datacenterIdShift) //| (workerId << workerIdShift) //| sequence;
}/*** 阻塞到下一个毫秒,直到获得新的时间戳* @param lastTimestamp 上次生成ID的时间截* @return 当前时间戳*/
protected long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;
}/*** 返回以毫秒为单位的当前时间* @return 当前时间(毫秒)*/
protected long timeGen() {return System.currentTimeMillis();
}/*** 随机id生成,使用雪花算法* @return*/
public static String getSnowId() {SnowflakeIdWorker sf = new SnowflakeIdWorker();String id = String.valueOf(sf.nextId());return id;
}//=========================================Test=========================================/*** 测试*/
public static void main(String[] args) {SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);for (int i = 0; i < 1000; i++) {long id = idWorker.nextId();System.out.println(id);}
}

} ```

UidGenerator(百度)

UidGenerator 是百度开源的 Java 语言实现,基于 Snowflake 算法的唯一 ID 生成器。它是分布式的,并克服了雪花算法的并发限制。单个实例的 QPS 能超过 6000000。需要的环境:JDK 8+,MySQL(用于分配 WorkerId)。

百度的 Uidgenerator 对结构做了部分的调整,具体如下:

7e731bd302a24d60b3d1a2cb13273d21.png

UidGenerator 的时间部分只有 28 位,这就意味着 UidGenerator 默认只能承受 $2^{28} - 1/86400/365 = 8.5$ 年。你也可以根据你业务的需求,UidGenerator 可以适当调整 delta seconds、worker node id和 sequence 占用位数。

源码地址:https://github.com/baidu/uid-generator

中文文档地址:https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md

Leaf(美团)

Leaf 算法由美团开发,开源项目链接:https://github.com/Meituan-Dianping/Leaf。

Leaf 同时支持号段模式和 Snowflake 算法模式,可以切换使用。ID 号码是趋势递增的 8 byte的 64 位数字,满足上述数据库存储的主键要求。

Leaf 的 snowflake 模式依赖于 ZooKeeper,不同于原始 Snowflake 算法也主要是在 workId 的生成上,Leaf 中 workId 是基于 ZooKeeper 的顺序 Id 来生成的,每个应用在使用 Leaf-Snowflake 时,启动时都会都在 Zookeeper 中生成一个顺序 Id,相当于一台机器对应一个顺序节点,也就是一个 workId。

Leaf 的号段模式是对直接用数据库自增 ID 充当分布式 ID 的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增 ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表 1000 个ID,业务服务将号段在本地生成 1~1000 的自增 ID 并加载到内存。

特性:

1)全局唯一,绝对不会出现重复的 ID,且 ID 整体趋势递增。 2)高可用,服务完全基于分布式架构,即使 MySQL 宕机,也能容忍一段时间的数据库不可用。 3)高并发低延时,在 CentOS 4C 8G 的虚拟机上,远程调用 QPS 可达 5W+,TP99 在 1ms 内。 4)接入简单,直接通过公司 RPC 服务或者 HTTP 调用即可接入。

Leaf 采用双 Buffer 的方式,它的服务内部有两个号段缓存区 Segment。当前号段已消耗 10% 时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。

简而言之就是 Leaf 保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。

TinyID(滴滴)

TinyID 算法由滴滴开发,开源项目链接:https://github.com/didi/tinyid。

TinyID 是在美团(Leaf)的 leaf-segment 算法基础上升级而来,不仅支持了数据库多主节点模式,还提供了 tinyid-client 客户端的接入方式,使用起来更加方便。但和美团(Leaf)不同的是,TinyID 只支持号段一种模式不支持雪花模式。TinyID 提供了两种调用方式,一种基于 Tinyid-server 提供的 http 调用方式,另一种 Tinyid-client 客户端方式。每个服务获取一个号段(1000, 2000]、(2000, 3000]、(3000, 4000]。

特性:

1)全局唯一的 long 型 ID。 2)趋势递增的 id。 3)提供 http 和 java-client 方式接入 4)支持批量获取 ID。 5)支持生成 1, 3, 5, 7, 9 有固定步长序列的 ID。 6)支持多个 db 的配置。

适用场景:只关心 ID 是数字,趋势递增的系统,可以容忍 ID 不连续,可以容忍 ID 的浪费。 不适用场景:像类似于订单 ID 的业务,因生成的 ID 大部分是连续的,容易被扫库、或者推算出订单量等信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/377517.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】进程间通信——命名管道和共享内存

目录 命名管道&#xff08;named pipe&#xff09; 命令行中使用 代码中使用 共享内存&#xff08;shared memory&#xff09; shmget ipcs命令 shmctl shmat/shmdt 简单通信 命名管道&#xff08;named pipe&#xff09; 之前我们说了匿名管道&#xff0c;但是匿名管道…

为什么要使用加密软件?

一、保护数据安全&#xff1a;加密软件通过复杂的加密算法对敏感数据进行加密处理&#xff0c;使得未经授权的人员即使获取了加密数据&#xff0c;也无法轻易解密和获取其中的内容。这极大地提高了数据在存储、传输和使用过程中的安全性。 二、遵守法律法规&#xff1a;在许多国…

无人机图像目标检测

本仓库是人工智能课程的课程作业仓库&#xff0c;主要是完成无人机图像目标检测的任务&#xff0c;我们对visdrone数据集进行了处理&#xff0c;在yolo和ssd两种框架下进行了训练和测试&#xff0c;并编写demo用于实时的无人机图像目标检测。 requirements依赖&#xff1a; ss…

ubuntu虚拟机安装ssh时报错 正在等待缓存锁

问题&#xff1a; 连接vm ubuntu虚拟机安装ssh时报错 正在等待缓存锁。 sudo apt install openssh-server 处理办法 sudo rm /var/lib/dpkg/lock-frontend sudo rm /var/cache/apt/archives/lock sudo rm /var/lib/dpkg/lock

K8S ingress 初体验 - ingress-ngnix 的安装与使用

准备环境 先把 google 的vm 跑起来… gatemanMoreFine-S500:~/projects/coding/k8s-s/service-case/cloud-user$ kubectl get nodes NAME STATUS ROLES AGE VERSION k8s-master Ready control-plane,master 124d v1.23.6 k8s-no…

python数据可视化(5)——绘制饼图

课程学习来源&#xff1a;b站up&#xff1a;【蚂蚁学python】 【课程链接&#xff1a;【【数据可视化】Python数据图表可视化入门到实战】】 【课程资料链接&#xff1a;【链接】】 Python绘制饼图分析北京天气 饼图&#xff0c;是一个划分为几个扇形的圆形统计图表&#xff…

爬虫-requests和Selenium

1、了解requests的功能 1.1 使用post和get发送请求 HTTP中常见发送网络请求的方式有两种&#xff0c;GET和POST。GET是从指定的资源请求数据&#xff0c;POST是向指定的资源提交要被处理的数据。 GET的用法&#xff1a; import requestsr requests.get("https://www.…

Milvus 核心设计(5)--- scalar indexwork mechanism

目录 背景 Scalar index 简介 属性过滤 扫描数据段 相似性搜索 返回结果 举例说明 1. 属性过滤 2. 扫描数据段 3. 相似性搜索 实际应用中的考虑 Scalar Index 方式 Auto indexing Inverted indexing 背景 继续Milvus的很细设计&#xff0c;前面主要阐述了Milvu…

Swift网络爬虫与数据可视化的结合 (1)

前言 在当今数字化时代&#xff0c;数据的重要性不言而喻。Swift&#xff0c;作为一种现代的编程语言&#xff0c;以其高性能、易用性和安全性&#xff0c;成为了开发iOS和macOS应用的首选。本文将探讨如何使用Swift来开发一个网络爬虫&#xff0c;以及如何将爬取的数据进行可…

图像边缘检测中Sobel算子的原理,并附OpenCV和Matlab的示例代码

Sobel算子是一种用于图像边缘检测的离散微分算子。它结合了图像的平滑处理和微分计算&#xff0c;旨在强调图像中强度变化显著的区域&#xff0c;即边缘。Sobel算子在图像处理中被广泛使用&#xff0c;特别是在计算机视觉和图像分析领域。 Sobel算子的原理 Sobel算子主要用于计…

【数学建模与优化】:解析与实践

目录 数学建模概述 1. 什么是数学模型 2. 数学模型的分类 2.1 按应用领域分类 2.2 按建模方法分类 2.3 按是否考虑随机因素分类 2.4 按变量的连续性分类 2.5 按对对象内部规律了解程度分类 2.6 按变量的基本关系分类 2.7 按是否考虑时间变化分类 3. 数学规划及优化模…

【车载开发系列】GIT教程---如何下载代码库

【车载开发系列】GIT教程—如何下载代码库 【车载开发系列】GIT教程---如何下载代码库 【车载开发系列】GIT教程---如何下载代码库一. 设置用户名和邮箱二. 生成SSH三. 登录远程github仓库配置四. Git中的ssh协议介绍五. 什么是GitLab六. GitLab与GitHub区别1&#xff09;用途和…

Python 获取今天(当天)、昨天(前一天)、前天(昨天的前一天)的开始时间、结束时间

描述&#xff1a;我这里是封装成DatetimeHelper工具类来调用 1.今天(当天)开始时间、结束时间 from datetime import datetime, timedeltaclass DatetimeHelper:# 获取今天(当天)的开始时间、结束时间(datetime类型)staticmethoddef getTodayStartEnd():# 获取当前的日期now …

nginx生成自签名SSL证书配置HTTPS

一、安装nginx nginx必须有"--with-http_ssl_module"模块 查看nginx安装的模块&#xff1a; rootecs-7398:/usr/local/nginx# cd /usr/local/nginx/ rootecs-7398:/usr/local/nginx# ./sbin/nginx -V nginx version: nginx/1.20.2 built by gcc 9.4.0 (Ubuntu 9.4.0…

HarmonyOS 屏幕适配设计

1. armonyOS 屏幕适配设计 1.1. 像素单位 &#xff08;1&#xff09;px (Pixels)   px代表屏幕上的像素点&#xff0c;是手机屏幕分辨率的单位&#xff0c;即屏幕物理像素单位。 &#xff08;2&#xff09;vp (Viewport Percentage)   vp是视口百分比单位&#xff0c;基于…

如何在excel表中实现单元格满足条件时整行变色?

可以试试使用条件格式&#xff1a; 一、条件格式 所谓“自动变色”就要使用条件格式。 先简单模拟数据如下&#xff0c; 按 B列数字为偶数 为条件&#xff0c;整行标记为蓝色背景色。 可以这样设置&#xff1a; 先选中1:10行数据&#xff0c;在这里要确定一下名称栏里显示…

元器件基础学习笔记——磁珠

一、磁珠的作用及构造 1.1 磁珠的作用 磁珠是一种用于抑制高频噪声的被动电子组件&#xff0c;通常由铁氧体材料制成&#xff0c;这种材料具有高电阻率和高磁导率&#xff0c;使其能够在高频下有效地将干扰信号以热能的形式消耗掉。在电路设计中&#xff0c;磁珠被广泛用于信号…

SQL Server设置定时作业调度Schedule

文章目录 SQL Server代理 SQL Server代理 SQL Server提供了一种称为SQL Server代理的功能&#xff0c;可以用来设置定时作业。以下是在SQL Server中设置定时作业的步骤&#xff1a; 打开SQL Server Management Studio&#xff08;SSMS&#xff09;。 连接到要设置定时作业的数…

Kotlin标准函数(语法糖)let with run also apply快速讲解

目录 1、知识储备——扩展函数 原理 定义扩展函数 调用扩展函数 2、返回值为上下文对象的标准函数 apply also 3、返回值为Lambda表达式结果 let run with 4、一表总结 1、知识储备——扩展函数 原理 Kotlin 在不继承父类或实现接口下&#xff0c;也能扩展一个类的…

N-(4-Azido-2-nitrophenyl)-N‘‘-biotinylnorspemidine

​一、基本信息 常用名&#xff1a;N-(4-Azido-2-nitrophenyl)-N-biotinylnorspemidine 英文名&#xff1a;N-(4-Azido-2-nitrophenyl)-N-biotinylnorspemidine CAS号&#xff1a;786609-83-4 分子式&#xff1a;C22H33N9O4S 分子量&#xff1a;519.62 二、结构特点 该化…