LLM - 大模型 ScallingLaws 的迁移学习与混合训练(PLM) 教程(3)

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/145212097

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


Scaling Laws (缩放法则) 是大模型领域中,用于描述 模型性能(Loss) 与 模型规模N、数据量D、计算资源C 之间关系的经验规律,揭示在大模型中,随着模型参数数量、数据集大小和计算资源的增加,模型性能的变化模式,指导更高效地分配资源,优化模型训练过程,实现更好的性能。这些规律不仅有助于预测不同规模模型的表现,还能为模型设计和训练提供理论依据,是推动大模型发展和应用的重要理论基础。

在 PLM 的迁移学习中,预训练 CLM 迁移至 MLM,通过 迁移缩放法则(Transfer Scaling Laws),合理的分配训练资源,以达到性能最优。同时验证,混合训练(Mixing Training) CLM 与 MLM,不如从零开始训练。

系列文章:

  1. 大模型 ScallingLaws 的 C=6ND 公式推导
  2. 大模型 ScallingLaws 的 CLM 和 MLM 中不同系数
  3. 大模型 ScallingLaws 的迁移学习与混合训练

1. 从零开始与迁移学习

迁移缩放法则(Transfer Scaling Laws):预训练 MLM,迁移至 CLM,随着模型规模增大,收益递减;预训练 CLM,迁移至 MLM,随着模型规模增大,收益增加。不同 FLOPs 下 CLM 和 MLM 的损失(Loss)曲线,表明迁移策略的 有效前沿(Efficiency Frontiers),或 帕累托前沿(Pareto Frontier) 。如图:

Transfer

同时训练多个目标时,可能存促进或干扰,即 协同效应 问题,训练顺序也是关键因素,先训练 CLM 再训练 MLM,效果影响较大,反之,效果影响较小。

从零开始训练(Training from Scratch) L ( C s ) L(C_{s}) L(Cs)迁移学习(Transfer Learning) L ( C t ) L(C_{t}) L(Ct) 的 Loss 与 C 的法则:

L ( C s ) = a s × C s α s , L ( C t ) = a t × C t α t L(C_{s}) = a_{s} \times C_{s}^{\alpha_{s}},L(C_{t})=a_{t} \times C_{t}^{\alpha_{t}} L(Cs)=as×CsαsL(Ct)=at×Ctαt

计算量与 Loss 的相关参数:

Loss

例如,以 CLM 的计算量 1 × 1 0 21 1 \times 10^{21} 1×1021 为例,从头开始训练(CLM)的 Loss 与 迁移学习(MLM to CLM)的 Loss,即:

L ( C s ) = 8.251 × ( 1 × 1 0 21 ) − 0.027 = 2.2362 L ( C t ) = 7.191 × ( 1 × 1 0 21 ) − 0.024 = 2.2531 L ( C s ) = 8.251 × ( 3 × 1 0 19 ) − 0.027 = 2.4582 L ( C t ) = 7.191 × ( 3 × 1 0 19 ) − 0.024 = 2.4507 L(C_s) = 8.251 \times (1 \times 10^{21})^{-0.027} = 2.2362 \\ L(C_t) = 7.191 \times (1 \times 10^{21})^{-0.024} = 2.2531 \\ L(C_s) = 8.251 \times (3 \times 10^{19})^{-0.027} = 2.4582 \\ L(C_t) = 7.191 \times (3 \times 10^{19})^{-0.024} = 2.4507 L(Cs)=8.251×(1×1021)0.027=2.2362L(Ct)=7.191×(1×1021)0.024=2.2531L(Cs)=8.251×(3×1019)0.027=2.4582L(Ct)=7.191×(3×1019)0.024=2.4507

例如,以 MLM 的计算量 1 × 1 0 21 1 \times 10^{21} 1×1021 为例,从头开始训练(MLM)的 Loss 与 迁移学习(CLM to MLM)的 Loss,即:

L ( C s ) = 10.125 × ( 1 × 1 0 21 ) − 0.034 = 1.9561 L ( C t ) = 11.133 × ( 1 × 1 0 21 ) − 0.038 = 1.7726 L(C_s) = 10.125 \times (1 \times 10^{21})^{-0.034} = 1.9561 \\ L(C_t) = 11.133 \times (1 \times 10^{21})^{-0.038} = 1.7726 L(Cs)=10.125×(1×1021)0.034=1.9561L(Ct)=11.133×(1×1021)0.038=1.7726

因此,推导出 MLM 从零开始训练 C s C_{s} Cs 与 从 CLM 迁移学习 C t C_{t} Ct 的达到最优 Loss 所需计算量的比例:

C t ∝ C s α s α t = C s − 0.034 − 0.038 = C s 0.894 C_{t} \propto C_{s}^{\frac{\alpha_{s}}{\alpha_{t}}} = C_{s}^{\frac{-0.034}{-0.038}} = C_{s}^{0.894} \\ CtCsαtαs=Cs0.0380.034=Cs0.894

因此,最优的迁移学习策略:先使用 CLM 预训练,然后再训练 MLM。同时,CLM 与 MLM 的 混合训练(Mixing Training) 或改变训练顺序(即先 MLM 后 CLM),都没有带来显著的益处。推测原因是, MLM 仅专注于恢复 被损坏(Mask) 的标记,不具有因果性,如果 MLM 以从左到右的方式,根据上文预测序列中间的片段,才可能加快训练速度。

关于 CLM 与 MLM 的 混合训练(Mixing Training) 目标的验证 Loss,在全部模型规模中,从零开始训练都比混合训练的验证损失更低,表明,混合训练不如针对每个单独目标的专门训练有效。参考:

Mix

2. CLM 迁移至 MLM 的 Tokens 比例

左侧:为 CLM 预训练分配的 % 计算量的有效困惑度,即,% 计算资源表示在 CLM 预训练,剩余计算资源在 MLM 微调。最优的 CLM 预训练 % 计算资源范围为 [ 10 , 20 ] [10,20] [10,20],拟合的 D t D t + D f \frac{D_{t}}{D_{t}+D_{f}} Dt+DfDt 在最优损失范围内下降。

右侧:从零开始训练的模型(红色)从预训练 CLM 微调的模型(绿色) 的验证 困惑度(PPL) 比较,表明从 CLM 微调在更少 Tokens 数量下,降低困惑度。

Transfer

以模型规模 N = 85 M N=85M N=85M 为例,通过之前的公式,合理计算模型的计算量 C = 3 × 1 0 19 C=3 \times 10^{19} C=3×1019,即:

C C L M ( N ) = ( N 1.26 ∗ 1 0 − 3 ) 1 0.578 C C L M ( 85 × 102 4 2 ) = ( 85 × 102 4 2 1.26 × 1 0 − 3 ) 1 0.578 = 0.6 × 1 0 19 C M L M ( N ) = ( N 6.19 × 1 0 − 8 ) 1 0.776 C M L M ( 85 × 102 4 2 ) = ( 85 × 102 4 2 6.19 × 1 0 − 8 ) 1 0.776 = 3.4 × 1 0 19 \begin{align} C_{CLM}(N) &= (\frac{N}{1.26*10^{-3}})^\frac{1}{0.578} \\ C_{CLM}(85 \times 1024^{2}) &= (\frac{85 \times 1024^{2}}{1.26 \times 10^{-3}})^{\frac{1}{0.578}} \\ &= 0.6 \times 10^{19} \\ C_{MLM}(N) &= (\frac{N}{6.19 \times 10^{-8}})^{\frac{1}{0.776}} \\ C_{MLM}(85 \times 1024^{2}) &= (\frac{85 \times 1024^{2}}{6.19 \times 10^{-8}})^{\frac{1}{0.776}} \\ &= 3.4 \times 10^{19} \end{align} CCLM(N)CCLM(85×10242)CMLM(N)CMLM(85×10242)=(1.26103N)0.5781=(1.26×10385×10242)0.5781=0.6×1019=(6.19×108N)0.7761=(6.19×10885×10242)0.7761=3.4×1019

合理数据量 D = 63.58 × 1 0 9 D=63.58 \times 10^{9} D=63.58×109 是:

D = C 6 N = 3.4 × 1 0 19 6 × 85 × 102 4 2 = 63.58 × 1 0 9 = 60 B \begin{align} D = \frac{C}{6N} = \frac{3.4 \times 10^{19}}{6 \times 85 \times 1024^{2}} = 63.58 \times 10^{9} = 60B \end{align} D=6NC=6×85×102423.4×1019=63.58×109=60B

其中, D t D_{t} Dt 表示 CLM 预训练的 Tokens 数量, D f D_{f} Df 表示 MLM 微调的 Tokens 数量,全部数据量即 D t + D f D_{t}+D_{f} Dt+Df

有效转移标记(Effectively Transferred Tokens, ETT) D t D_{t} Dt 是模型规模相同,在 MLM 上从零开始训练,以达到与在 CLM 上预训练的模型,相同损失所需的额外数据。如果预训练的 CLM 模型中的标记数量超过 D t D_{t} Dt ,那么 CLM 预训练的计算就是多余的。如果能提前知道 D t D_{t} Dt ,可以指导 CLM 预训练的标记分配。

迁移缩放法则(Transfer Scaling Laws),以模型规模 N = 85 M N=85M N=85M ,微调数据 D f = 48 B D_{f}=48B Df=48B 为例,计算预训练 D t = 8.57 B D_{t}=8.57B Dt=8.57B占比约 14.28%,属于 [10, 20] 之间,符合法则:

D t = k × 1 D f α × 1 N β = 3.65 × 1 0 5 × 1 D f − 0.137 × 1 N − 0.369 D t = 3.65 × 1 0 5 × 1 ( 48 × 102 4 3 ) − 0.137 × 1 ( 85 × 102 4 2 ) − 0.369 = 9.2 × 1 0 9 ≈ 8.57 B < 12 B \begin{align} D_{t} &= k \times \frac{1}{D_{f}^{\alpha}} \times \frac{1}{N^{\beta}} \\ &= 3.65 \times 10^5 \times \frac{1}{D_{f}^{-0.137}} \times \frac{1}{N^{-0.369}} \\ D_{t} &= 3.65 \times 10^5 \times \frac{1}{(48 \times 1024^3)^{-0.137}} \times \frac{1}{(85 \times 1024^2)^{-0.369}} \\ &= 9.2 \times 10^9 \approx 8.57B < 12B \end{align} DtDt=k×Dfα1×Nβ1=3.65×105×Df0.1371×N0.3691=3.65×105×(48×10243)0.1371×(85×10242)0.3691=9.2×1098.57B<12B

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/3786.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity2017 控制.abc格式的三维动画播放

首先需要导入插件Alembic&#xff0c;否则导入abc动画&#xff0c;Unity是不会识别的。 Unity2017版本及以下直接从我这儿下载&#xff1a;https://download.csdn.net/download/qq_41603955/90272382 高版本Unity&#xff0c;请移步AssetStore商店搜找。 导入abc之后&#x…

【视觉惯性SLAM:十七、ORB-SLAM3 中的跟踪流程】

17.1 跟踪流程流程图 ORB-SLAM3 的跟踪模块是整个系统的重要组成部分&#xff0c;负责实时确定相机在三维空间中的姿态位置&#xff0c;并保持关键帧之间的连续性。其基本目标是将输入的视频流与已有地图数据进行对齐&#xff0c;完成位姿估计和地图更新。 流程图概述 一个…

开发神器之cursor

文章目录 cursor简介主要特点 下载cursor页面的简单介绍切换大模型指定ai学习的文件指定特定的代码喂给ai创建项目框架文件 cursor简介 Cursor 是一款专为开发者设计的智能代码编辑器&#xff0c;集成了先进的 AI 技术&#xff0c;旨在提升编程效率。以下是其主要特点和功能&a…

CSRF攻击XSS攻击

概述 ​在 HTML 中&#xff0c;<a>, <form>, <img>, <script>, <iframe>, <link> 等标签以及 Ajax 都可以指向一个资源地址&#xff0c;而所谓的跨域请求就是指&#xff1a;当前发起请求的域与该请求指向的资源所在的域不一样。这里的域指…

cuda + cudnn安装

1.安装CUDA Toolkit 在设备管理器&#xff08;此电脑–右键–属性&#xff09;的显示适配器中可以查看自己的显卡型号&#xff0c;去下载对应的CUDA Toolkit 。或者输入以下命令查看Driver Version &#xff0c;cuda Version&#xff1a;12.2代表12.2版本以下兼容可以进行安装 …

vscode 设置

一、如何在vscode中设置放大缩小代码 1.1.文件—首选项——设置 1.2.在搜索框里输入“Font Ligatures”&#xff0c;然后点击"在settings.json中编辑" 1.3.在setting中&#xff08;"editor.fontLigatures":前&#xff09;添加如下代码 "editor.mous…

海云安开发者安全智能助手D10荣膺 “ AI标杆产品 ” 称号,首席科学家齐大伟博士入选2024年度 “ 十大杰出青年 ”

2024年12月27日&#xff0c;粤港澳大湾区AI领袖峰会在深圳成功举办&#xff0c;大会表彰了在人工智能技术创新、应用实践和产业发展等方面取得优异成绩的企业和个人&#xff0c;深圳海云安网络安全技术有限公司开发者安全智能助手D10荣膺“AI标杆产品”称号。同时&#xff0c;公…

网络安全---CMS指纹信息实战

CMS简介 CMS&#xff08;Content Management System&#xff09;指的是内容管理系统&#xff0c;如WordPress、Joomla等。CMS系统非常常见&#xff0c;几乎所有大型网站都使用CMS来管理其网站的内容。由于常见CMS的漏洞较多&#xff0c;因此黑客将不断尝试利用这些漏洞攻击CMS…

西门子【Library of Basic Controls (LBC)基本控制库”(LBC) 提供基本控制功能】

AF架构中使用的库 文章目录 Table of contents Legal information ..............................................................................................................................2 1 Introduction ................................................…

upload-labs靶场练习

01&#xff08;JS前端认证&#xff09; 客户端JS脚本有限制&#xff0c;本来想用上次笔记的方法来做&#xff08;即改扩展名为.jpg&#xff0c;上传&#xff0c;抓包&#xff0c;改扩展名为.php&#xff0c;放行或者发送至repeater&#xff0c;改扩展名然后重发&#xff0c;再…

登录校验Cookie、Session、JWT

目录 基础知识&#xff1a;登录校验的场景 基础知识&#xff1a;会话 ​编辑方案一&#xff1a;Cookie 方案二&#xff1a;Session 方案三&#xff1a;令牌技术 JWT 令牌 基础知识&#xff1a;登录校验的场景 基础知识&#xff1a;会话 什么是会话&#xff1f;什么是会话跟…

Web端实时播放RTSP视频流(监控)

一、安装ffmpeg: 1、官网下载FFmpeg: Download FFmpeg 2、点击Windows图标,选第一个:Windows builds from gyan.dev 3、跳转到下载页面: 4、下载后放到合适的位置,不用安装,解压即可: 5、配置path 复制解压后的\bin路径,配置环境变量如图: <

【SPIE出版|EI、Scopus双检索】2025年绿色能源与环境系统国际学术会议(GEES 2025)

2025年绿色能源与环境系统国际学术会议&#xff08;GEES 2025&#xff09; 会议时间&#xff1a;2025年6月20-22日 会议地点&#xff1a;中国-湖北 最终截稿日期&#xff1a;2025年6月8日 注册截止时间&#xff1a;2025年6月8日 提交检索类型&#xff1a;EI Compendex 和 …

在21世纪的我用C语言探寻世界本质——字符函数和字符串函数(2)

人无完人&#xff0c;持之以恒&#xff0c;方能见真我&#xff01;&#xff01;&#xff01; 共同进步&#xff01;&#xff01; 文章目录 一、strncpy函数的使用二、strncat函数的使用三、strncmp函数的使用四、strstr的使用和模拟实现五、strtok函数的使用六、strerror和pe…

3D 视觉语言推理中的态势感知

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 概要 能够在 3D 空间中执行复杂的视觉语言推理任务是开发家用机器人和以人为本的具身 AI 的一个重要里程碑。在这项工作中&#xff0c;我们证明了 3D 视觉语言推理中一个关键而独特的挑战是态势感知&…

华为数据中心CE系列交换机级联M-LAG配置示例

M-LAG组网简介 M-LAG&#xff08;Multi-chassis Link Aggregation&#xff09;技术是一种跨设备的链路聚合技术&#xff0c;它通过将两台交换机组成一个逻辑设备&#xff0c;实现链路的负载分担和故障切换&#xff0c;从而提高网络的可靠性和稳定性。下面给大家详细介绍如何在…

Python Pyside6 加Sqlite3 写一个 通用 进销存 系统 初型

图: 说明: 进销存管理系统说明文档 功能模块 1. 首页 显示关键业务数据商品总数供应商总数本月采购金额本月销售金额显示预警信息库存不足预警待付款采购单待收款销售单2. 商品管理 商品信息维护商品编码(唯一标识)商品名称规格型号单位分类进货价销售价库存数量预警…

放大芯片参数阅读

一、芯片的增益能力 1. GBW&#xff08;增益带宽积&#xff09; 例如&#xff0c;GBW (typ) 1 MHz。 增益带宽积&#xff08;Gain Bandwidth Product&#xff09;是一个关键参数&#xff0c;用于计算在特定频率下的最大增益。 定义公式为&#xff1a; 增益带宽G…

编程工具箱(免费,离线可用)

https://www.yuque.com/huanmin-4bkaa/ii1hx1?# 《工具箱》 常用的大部分工具都有, 比如mysql可视化 redis可视化, json编辑器, 加解密等(免费,离线可用) 后续也会慢慢的集成

SpringBoot项目打war包要点

1. 修改pom文件packaging 2. 不使用内置tomcat 3. 加一个类 4. 修改外部tomcat配置文件 5. 修改nginx配置文件&#xff0c;构建集群 资料来自网络