k8s集群 安装配置 Prometheus+grafana

k8s集群 安装配置 Prometheus+grafana

  • k8s环境如下:
    • 机器规划:
  • node-exporter组件安装和配置
    • 安装node-exporter
    • 通过node-exporter采集数据
      • 显示192.168.40.180主机cpu的使用情况
      • 显示192.168.40.180主机负载使用情况
  • Prometheus server安装和配置
    • 创建sa账号,对sa做rbac授权
    • 创建prometheus数据存储目录
    • 安装Prometheus server服务
    • 通过deployment部署prometheus
    • 给prometheus pod创建一个service
    • Prometheus热加载
  • 可视化UI界面Grafana的安装和配置
    • 安装Grafana
      • Grafana界面接入Prometheus数据源
    • 配置grafana界面:
      • 导入的监控模板,可在如下链接搜索
      • 如果Grafana导入Prometheusz之后,发现仪表盘没有数据,如何排查?
  • 安装kube-state-metrics组件
    • kube-state-metrics是什么?
    • 安装kube-state-metrics组件

k8s环境如下:

k8s集群: k8s的控制节点
ip:192.168.40.110
主机名:k8smaster1
配置:4vCPU/4Gi内存

k8s的工作节点:
ip:192.168.40.111
主机名:k8snode1
配置:4vCPU/4Gi内存

k8s版本1.25

机器规划:

我的实验环境使用的k8s集群是一个master节点和一个node节点
master节点的机器ip是192.168.40.110,主机名是k8smaster1
node节点的机器ip是192.168.40.111,主机名是k8snode1

node-exporter组件安装和配置

node-exporter介绍
node-exporter可以采集机器(物理机、虚拟机、云主机等)的监控指标数据,能够采集到的指标包括CPU, 内存,磁盘,网络,文件数等信息。

安装node-exporter

node-exporter.tar.gz镜像压缩包上传到k8s的各个节点,手动解压:
链接:https://pan.baidu.com/s/1EBsJPfWDO3c1qMeaESe5Ig?pwd=7bbw
提取码:7bbw

kubectl create ns monitor-sa
ctr -n=k8s.io images import node-exporter.tar.gz
docker load -i node-exporter.tar.gz

node-export.yaml
链接:https://pan.baidu.com/s/1wqaDok9afK58AGTR-QlvGg?pwd=fjfr
提取码:fjfr

cat  node-export.yaml
kind: DaemonSet  #可以保证k8s集群的每个节点都运行完全一样的podspec:hostPID: truehostIPC: truehostNetwork: true
# hostNetwork、hostIPC、hostPID都为True时,表示这个Pod里的所有容器
#会直接使用宿主机的网络,直接与宿主机进行IPC(进程间通信)通信,可以看到宿主机里正在运行的所有进程。
#加入了hostNetwork:true会直接将我们的宿主机的9100端口映射出来
#从而不需要创建service 在我们的宿主机上就会有一个9100的端口cpu: 0.15  #这个容器运行至少需要0.15核cpusecurityContext:privileged: true  #开启特权模式args:- --path.procfs  #配置挂载宿主机(node节点)的路径- /host/proc- --path.sysfs  #配置挂载宿主机(node节点)的路径- '"^/(sys|proc|dev|host|etc)($|/)"'#通过正则表达式忽略某些文件系统挂载点的信息收集volumeMounts:- name: devmountPath: /host/dev- name: procmountPath: /host/proc- name: sysmountPath: /host/sys- name: rootfsmountPath: /rootfs
#将主机/dev、/proc、/sys这些目录挂在到容器中,这是因为我们采集的很多节点数据都是通过这些文件来获取系统信息的。

通过kubectl apply更新node-exporter.yaml文件

kubectl apply -f node-export.yaml

查看node-exporter是否部署成功

kubectl get pods -n monitor-sa

显示如下,看到pod的状态都是running,说明部署成功

在这里插入图片描述

通过node-exporter采集数据

显示192.168.40.180主机cpu的使用情况

curl  http://虚拟机ip:9100/metrics
curl http://192.168.40.110:9100/metrics | grep node_cpu_seconds

在这里插入图片描述

  • #HELP:解释当前指标的含义,上面表示在每种模式下node节点的cpu花费的时间,以s为单位
  • #TYPE:说明当前指标的数据类型,上面是counter类型
node_cpu_seconds_total{cpu="0",mode="idle"}
  • cpu0上idle进程占用CPU的总时间,CPU占用时间是一个只增不减的度量指标,从类型中也可以看出node_cpu的数据类型是counter(计数器)
  • counter计数器:只是采集递增的指标

显示192.168.40.180主机负载使用情况

curl http://192.168.40.180:9100/metrics | grep node_load

在这里插入图片描述

  • node_load1该指标反映了当前主机在最近一分钟以内的负载情况,系统的负载情况会随系统资源的使用而变化,因此node_load1反映的是当前状态,数据可能增加也可能减少,从注释中可以看出当前指标类型为gauge(标准尺寸)
  • gauge标准尺寸:统计的指标可增加可减少

Prometheus server安装和配置

创建sa账号,对sa做rbac授权

创建一个sa账号monitor

kubectl create serviceaccount monitor -n monitor-sa 

把sa账号monitor通过clusterrolebing绑定到clusterrole上

kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin  --serviceaccount=monitor-sa:monitor

注意:行上面授权可能回报错,那就需要下面的授权命令

kubectl create clusterrolebinding monitor-clusterrolebinding-1  -n monitor-sa --clusterrole=cluster-admin   --user=system:serviceaccount:monitor:monitor-sa

创建prometheus数据存储目录

在k8s集群的xianchaonode1节点上创建数据存储目录

#在节点创建
mkdir /data
chmod 777 /data/

安装Prometheus server服务

创建一个configmap存储卷,用来存放prometheus配置信息
通过kubectl apply更新configmap
prometheus-cfg.yaml文件上传到k8s控制节点k8smaster1上:
链接:https://pan.baidu.com/s/1lQGQLp7ikDHSanOusSMTWQ?pwd=w6w4
提取码:w6w4

kubectl apply  -f  prometheus-cfg.yaml
cat prometheus-cfg.yaml
      scrape_interval: 15s  #采集目标主机监控据的时间间隔scrape_timeout: 10s  # 数据采集超时时间,默认10sevaluation_interval: 1m   #触发告警检测的时间,默认是1m#我们写了超过80%的告警,结果收到多条告警,但是真实超过80%的只有一个时间点。#这是另外一个参数影响的
evaluation_interval #这个是触发告警检测的时间,默认为1m。假如我们的指标是5m被拉取一次。
#检测根据evaluation_interval 1m一次,所以在值被更新前,我们一直用的旧值来进行多次判断,造成了1m一次,同一个指标被告警了4次。#scrape_configs:配置数据源,称为target,每个target用job_name命名。又分为静态配置和服务发现- job_name: 'kubernetes-node'kubernetes_sd_configs:
#使用的是k8s的服务发现- role: node
# 使用node角色,它使用默认的kubelet提供的http端口来发现集群中每个node节点。relabel_configs:
#重新标记- source_labels: [__address__] #配置的原始标签,匹配地址regex: '(.*):10250'   #匹配带有10250端口的urlreplacement: '${1}:9100'  #把匹配到的ip:10250的ip保留target_label: __address__ #新生成的url是${1}获取到的ip:9100action: replace- action: labelmap 
#匹配到下面正则表达式的标签会被保留,如果不做regex正则的话,默认只是会显示instance标签regex: __meta_kubernetes_node_label_(.+)- job_name: 'kubernetes-node-cadvisor'
# 抓取cAdvisor数据,是获取kubelet上/metrics/cadvisor接口数据来获取容器的资源使用情况- action: labelmap  #把匹配到的标签保留regex: __meta_kubernetes_node_label_(.+)   #保留匹配到的具有__meta_kubernetes_node_label的标签- target_label: __address__  #获取到的地址:__address__="192.168.40.110:10250"replacement: kubernetes.default.svc:443  #把获取到的地址替换成新的地址kubernetes.default.svc:443- source_labels: [__meta_kubernetes_node_name] #把原始标签中__meta_kubernetes_node_name值匹配到regex: (.+)target_label: __metrics_path__   #获取__metrics_path__对应的值replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor    #把metrics替换成新的值api/v1/nodes/k8smaster1/proxy/metrics/cadvisor
#  ${1}是__meta_kubernetes_node_name获取到的值
#新的url就是https://kubernetes.default.svc:443/api/v1/nodes/k8smaster1/proxy/metrics/cadvisor- job_name: 'kubernetes-apiserver'kubernetes_sd_configs:- role: endpoints  #使用k8s中的endpoint服务发现,采集apiserver 6443端口获取到的数据- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]  #endpoint这个对象的名称空间 ,endpoint对象的服务名,exnpoint的端口名称]action: keep  #采集满足条件的实例,其他实例不采集regex: default;kubernetes;https #正则匹配到的默认空间下的service名字是kubernetes,协议是https的endpoint类型保留下来relabel_configs:- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]action: keepregex: true
# 重新打标仅抓取到的具有 "prometheus.io/scrape: true" 的annotation的端点,意思是说如果某个service具有prometheus.io/scrape = true annotation声明则抓取,annotation本身也是键值结构,所以这里的源标签设置为键,而regex设置值true,当值匹配到regex设定的内容时则执行keep动作也就是保留,其余则丢弃。- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]action: replacetarget_label: __scheme__regex: (https?)
#重新设置scheme,匹配源标签__meta_kubernetes_service_annotation_prometheus_io_scheme也就是prometheus.io/scheme annotation,如果源标签的值匹配到regex,则把值替换为__scheme__对应的值。- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]action: replacetarget_label: __metrics_path__regex: (.+)
# 应用中自定义暴露的指标,也许你暴露的API接口不是/metrics这个路径,那么你可以在这个POD对应的service中做一个"prometheus.io/path = /mymetrics" 声明,上面的意思就是把你声明的这个路径赋值给__metrics_path__,其实就是让prometheus来获取自定义应用暴露的metrices的具体路径,不过这里写的要和service中做好约定,如果service中这样写 prometheus.io/app-metrics-path: '/metrics' 那么你这里就要
__meta_kubernetes_service_annotation_prometheus_io_app_metrics_path这样写。- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]action: replacetarget_label: __address__regex: ([^:]+)(?::\d+)?;(\d+)replacement: $1:$2
# 暴露自定义的应用的端口,就是把地址和你在service中定义的 "prometheus.io/port = <port>" 声明做一个拼接,然后赋值给__address__,这样prometheus就能获取自定义应用的端口,然后通过这个端口再结合__metrics_path__来获取指标,如果__metrics_path__值不是默认的/metrics那么就要使用上面的标签替换来获取真正暴露的具体路径。

在这里插入图片描述

scrape_configs:
#scrape_configs:配置数据源,称为target,每个target用job_name命名。又分为静态配置和服务发现- job_name: 'kubernetes-node'kubernetes_sd_configs:
#使用的是k8s的服务发现- role: node
# 使用node角色,它使用默认的kubelet提供的http端口来发现集群中每个node节点。relabel_configs:
#重新标记- source_labels: [__address__] #配置的原始标签,匹配地址regex: '(.*):10250'   #匹配带有10250端口的url
        replacement: '${1}:9100'  #把匹配到的ip:10250的ip保留target_label: __address__ #新生成的url是${1}获取到的ip:9100action: replace- action: labelmap 
#匹配到下面正则表达式的标签会被保留,如果不做regex正则的话,默认只是会显示instance标签regex: __meta_kubernetes_node_label_(.+)

通过deployment部署prometheus

镜像prometheus-2-2-1.tar.gz上传到k8s的工作节点k8snode1上,手动解压
链接:https://pan.baidu.com/s/1arlhVb0q-9tWe9KHZG1Htg?pwd=j6m1
提取码:j6m1

ctr -n=k8s.io images import prometheus-2-2-1.tar.gz
#1.24前用  docker load -i prometheus-2-2-1.tar.gz

prometheus-deploy.yaml 上传至k8smaster1
链接:https://pan.baidu.com/s/11QOcz5udgbMpxGoYD6pP9w?pwd=rkp6
提取码:rkp6

kubectl apply -f prometheus-deploy.yaml
cat prometheus-deploy.yaml- --storage.tsdb.path=/prometheus  #旧数据存储目录- --storage.tsdb.retention=720h    #何时删除旧数据,默认为15天。- --web.enable-lifecycle   #开启热加载

注意:在上面的prometheus-deploy.yaml文件有个nodeName字段,这个就是用来指定创建的这个prometheus的pod调度到哪个节点上,我们这里让nodeName=k8snode1,也即是让pod调度到k8snode1节点上,因为k8snode1节点我们创建了数据目录/data,所以大家记住:你在k8s集群的哪个节点创建/data,就让pod调度到哪个节点,nodeName根据你们自己环境主机去修改即可。

查看prometheus是否部署成功

kubectl get pods -n monitor-sa

在这里插入图片描述

给prometheus pod创建一个service

prometheus-svc.yaml文件上传到k8s的控制节点k8smaster1上:
链接:https://pan.baidu.com/s/1j9Nz7trUT6rgZ9kS-ANb7Q?pwd=hgql
提取码:hgql

kubectl apply -f prometheus-svc.yaml

查看service在物理机映射的端口

kubectl get svc -n monitor-sa

在这里插入图片描述

通过上面可以看到service在宿主机上映射的端口是31090,这样我们访问k8s集群的master1节点的ip:31090,就可以访问到prometheus的web ui界面了
#访问prometheus web ui界面
火狐浏览器输入如下地址:

http://192.168.40.110:31090/graph

可看到如下页面:

在这里插入图片描述

点击页面的Status->Targets,可看到如下,说明我们配置的服务发现可以正常采集数据
在这里插入图片描述

Prometheus热加载

为了每次修改配置文件可以热加载prometheus,也就是不停止prometheus,就可以使配置生效,想要使配置生效可用如下热加载命令:

kubectl get pods -n monitor-sa -o wide -l app=prometheus

在这里插入图片描述

10.244.249.2是prometheus的pod的ip地址,如何查看prometheus的pod ip

想要使配置生效可用如下命令热加载:

curl -X POST http://10.244.249.2:9090/-/reload
  • 热加载速度比较慢,可以暴力重启prometheus,如修改上面的prometheus-cfg.yaml文件之后,可执行如下强制删除:
kubectl delete -f prometheus-cfg.yaml
kubectl delete -f prometheus-deploy.yaml
  • 然后再通过apply更新:
kubectl apply -f prometheus-cfg.yaml
kubectl apply -f prometheus-deploy.yaml

注意:线上最好热加载,暴力删除可能造成监控数据的丢失

可视化UI界面Grafana的安装和配置

安装Grafana

镜像heapster-grafana-amd64_v5_0_4.tar.gz上传到k8s的工作节点k8snode1上,手动解压:
链接:https://pan.baidu.com/s/1CMP6Ju-Zi-4dmJy2eSVtew?pwd=fkls
提取码:fkls

ctr -n=k8s.io images import  heapster-grafana-amd64_v5_0_4.tar.gz

grafana.yaml文件上传到k8s的控制节点:

kubectl apply -f grafana.yaml

查看grafana是否创建成功:

kubectl get pods -n kube-system -l task=monitoring

在这里插入图片描述

Grafana界面接入Prometheus数据源

查看grafana前端的service

kubectl get svc -n kube-system | grep grafana  

在这里插入图片描述

登陆grafana,在浏览器访问
192.168.40.110:30551

配置grafana界面:

选择Create your first data source
Name: Prometheus
Type: Prometheus
HTTP 处的URL写 如下:

http://prometheus.monitor-sa.svc:9090

配置好的整体页面如下:
在这里插入图片描述

点击左下角Save & Test,出现如下Data source is working,说明prometheus数据源成功的被grafana接入了

导入的监控模板,可在如下链接搜索

https://grafana.com/dashboards?dataSource=prometheus&search=kubernetes

上面Save & Test测试没问题之后,就可以返回Grafana主页面
点击左侧+号下面的Import,出现如下界面
在这里插入图片描述

可直接导入node_exporter.json监控模板,这个可以把node节点指标显示出来
node_exporter.json
链接:https://pan.baidu.com/s/1lK43XIWKuMYiQoWBAtJJ-Q?pwd=j01k
提取码:j01k

在这里插入图片描述
在这里插入图片描述

docker_rev1.json,显示容器资源指标的
链接:https://pan.baidu.com/s/1F_9ApBvKCV3lkHvxPLP-OQ?pwd=wkph
提取码:wkph

导入docker_rev1.json监控模板,步骤和上面导入node_exporter.json步骤一样,导入之后显示如下:
在这里插入图片描述

如果Grafana导入Prometheusz之后,发现仪表盘没有数据,如何排查?

打开grafana界面,找到仪表盘对应无数据的图标
在这里插入图片描述

Edit之后出现如下:

在这里插入图片描述

node_cpu_seconds_total 就是grafana上采集的cpu的时间,需要到prometheus ui界面看看采集的指标是否是node_cpu_seconds_total

在这里插入图片描述

如果在prometheus ui界面输入node_cpu_seconds_total没有数据,那就看看是不是prometheus采集的数据是node_cpu_seconds_totals,怎么看呢?

在这里插入图片描述

安装kube-state-metrics组件

kube-state-metrics是什么?

  • kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,
  • 比如Pod副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?我有多少job在运行中。

安装kube-state-metrics组件

创建sa,并对sa授权
kube-state-metrics-rbac.yaml文件上传到k8s的控制节点:
链接:https://pan.baidu.com/s/1fNAovsSfabcQMTpX4AknnQ?pwd=m6r0
提取码:m6r0

kubectl apply -f kube-state-metrics-rbac.yaml

安装kube-state-metrics组件
kube-state-metrics_1_9_0.tar.gz组件上传到k8s各个工作节点,手动解压:
链接:https://pan.baidu.com/s/1UufIAWnnQgP1vYSTvushSw?pwd=uunh
提取码:uunh

ctr -n=k8s.io images import kube-state-metrics_1_9_0.tar.gz

kube-state-metrics-deploy.yaml上传到k8smaster1节点
链接:https://pan.baidu.com/s/1GnMeja2VQUwHXj9MPsCHqQ?pwd=n0o9
提取码:n0o9

kubectl apply -f kube-state-metrics-deploy.yaml

查看kube-state-metrics是否部署成功

kubectl get pods -n kube-system -l app=kube-state-metrics

在这里插入图片描述

创建service
kube-state-metrics-svc.yaml文件上传到k8s的k8smaster1节点:
链接:https://pan.baidu.com/s/1DjZuLFDcH9mjRXY6CHJNfw?pwd=uo52
提取码:uo52

kubectl apply -f kube-state-metrics-svc.yaml

查看service是否创建成功

kubectl get svc -n kube-system | grep kube-state-metrics

在这里插入图片描述

在grafana web界面导入Kubernetes Cluster (Prometheus)-1577674936972.json和Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json

导入Kubernetes Cluster (Prometheus)-1577674936972.json文件
链接:https://pan.baidu.com/s/1SpGM2hb0uuEsyJaYnhE_Rw?pwd=u1dz
提取码:u1dz
在这里插入图片描述

在grafana web界面导入Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json
链接:https://pan.baidu.com/s/1v-zwCmwqC3iRix1M5s_GnA?pwd=2jhl
提取码:2jhl
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/378936.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis中数据分片与分片策略

概述 数据分片是一种将数据分割并存储在多个节点上的技术&#xff0c;可以有效提高系统的扩展性和性能。在Redis中&#xff0c;数据分片主要用于解决单个实例存储容量和性能瓶颈的问题。通过将数据分散存储到多个Redis节点中&#xff0c;可以将负载均衡到不同的服务器上&#…

ArcGIS Enterprise 命令行组件创建配置

1. 创建ArcGIS Server站点 使用 createsite工具 命令行直接执行 createsite.sh [-u <arg>] [-p <arg>] [-d <arg>] [-c <arg>]执行文件 createsite.sh [-f <FILE>]安装目录下会有类似的创建站点文件&#xff1a; 修改其中的内容&#xff0c;…

芯片基础 | Verilog结构级描述和操作符(上)

术语定义(Terms and Definitions) 结构描述(Structural Modeling) 用门及门的连接描述器件的功能基本单元(primitives原语) Verilog语言已定义的具有简单逻辑功能的功能模型(models)结构描述 结构描述等价于逻辑图,它们都是连接简单元件来构成更为复杂的元件;Verilog使用其连接…

PDF小工具poppler

1. 简介 介绍一下一个不错的PDF库poppler。poppler的官网地址在:https://poppler.freedesktop.org/ 它是一个PDF的渲染库,顾名思义,它的用途就是读取PDF文件,然后显示到屏幕(显示到屏幕上只是一种最狭义的应用,包括使用Windows上的GDI技术显示文件内容,当然可以渲染到…

智慧水利:迈向水资源管理的新时代,结合物联网、云计算等先进技术,阐述智慧水利解决方案在提升水灾害防控能力、优化水资源配置中的关键作用

本文关键词&#xff1a;智慧水利、智慧水利工程、智慧水利发展前景、智慧水利技术、智慧水利信息化系统、智慧水利解决方案、数字水利和智慧水利、数字水利工程、数字水利建设、数字水利概念、人水和协、智慧水库、智慧水库管理平台、智慧水库建设方案、智慧水库解决方案、智慧…

海外社媒矩阵为何会被关联?如何IP隔离?

在当今的数字时代&#xff0c;社交媒体已经成为人们日常生活中不可或缺的一部分。通过社交媒体&#xff0c;人们可以与朋友互动&#xff0c;分享生活&#xff0c;甚至进行业务推广和营销。然而&#xff0c;社交媒体账号关联问题逐渐受到广泛关注。社交媒体账号为何会关联&#…

C++ | Leetcode C++题解之第239题滑动窗口最大值

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<int> maxSlidingWindow(vector<int>& nums, int k) {int n nums.size();vector<int> prefixMax(n), suffixMax(n);for (int i 0; i < n; i) {if (i % k 0) {prefixMax[i] num…

Oralce笔记-解决Oracle18c中ORA-28001: 口令已经失效

远程已经连不上了&#xff0c;需要登陆到安装Oracle的机器&#xff0c;使用sqlplus直接连。 sqlplus / as sysdba 登陆进去后修改期限为无限制&#xff1a; ALTER PROFILE DEFAULT LIMIT PASSWORD_LIFE_TIME UNLIMITED 对于已经告警提示密码已过期的数据库&#xff0c;需要…

【网络文明】关注网络安全

在这个数字化时代&#xff0c;互联网已成为我们生活中不可或缺的一部分&#xff0c;它极大地便利了我们的学习、工作、娱乐乃至日常生活。然而&#xff0c;随着网络空间的日益扩大&#xff0c;网络安全问题也日益凸显&#xff0c;成为了一个不可忽视的全球性挑战。认识到网络安…

【devops】ttyd 一个web版本的shell工具 | web版本shell工具 | web shell

一、什么是 TTYD ttyd是在web端一个简单的服务器命令行工具 类似我们在云厂商上直接ssh链接我们的服务器输入指令一样 二、安装ttyd 1、macOS Install with Homebrew: brew install ttydInstall with MacPorts: sudo port install ttyd 2、linux Binary version (recommend…

基于AT89C51单片机的多功能自行车测速计程器(含文档、源码与proteus仿真,以及系统详细介绍)

本篇文章论述的是基于AT89C51单片机的多功能自行车测速计程器的详情介绍&#xff0c;如果对您有帮助的话&#xff0c;还请关注一下哦&#xff0c;如果有资源方面的需要可以联系我。 目录 选题背景 原理图 PCB图 仿真图 代码 系统论文 资源下载 选题背景 美丽的夜晚&…

【机器学习入门】拥抱人工智能,从机器学习开始

拥抱人工智能&#xff0c;从机器学习开始 目录&#xff1a; 1. 机器学习&#xff1a;一种实现人工智能的方法 2. 机器学习算法&#xff1a;是使计算机具有智能的关键 3. Anaconda&#xff1a;初学Python、入门机器学习的首选 4. 总结 转载链接&#xff1a; 文章-阿里云开发者社…

基于嵌入式Linux的高性能车载娱乐系统设计与实现 —— 融合Qt、FFmpeg和CAN总线技术

随着汽车智能化的发展&#xff0c;车载娱乐系统已成为现代汽车的标配。本文介绍了一个基于Linux的车载娱乐系统的设计与实现过程。该系统集成了音视频娱乐、导航、车辆信息显示等功能&#xff0c;旨在提供安全、便捷、丰富的驾驶体验。 1. 项目概述 随着汽车智能化的发展&…

十五、【机器学习】【监督学习】- 神经网络回归

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…

水利行业的智慧革命:深度剖析智慧水利解决方案,看其如何以科技力量提升水资源管理效率,保障水生态安全

目录 一、智慧水利的概念与内涵 二、智慧水利解决方案的核心要素 1. 感知层&#xff1a;全面监测&#xff0c;精准感知 2. 网络层&#xff1a;互联互通&#xff0c;信息共享 3. 平台层&#xff1a;数据分析&#xff0c;智能决策 4. 应用层&#xff1a;精准施策&#xff0…

创建通用JS公共模块并发布至npm

title: 创建通用JS公共模块并发布至npm tags: UMD rollup verdaccio npm categories: 模块化 概要内容 创建&#xff1a;JS公共模块 打包&#xff1a;使用rollup 打包公共模块 发布&#xff1a;js公共模块至verdaccio平台 发布&#xff1a;js公共模块至npm平台 如何创建JS公共模…

GEO数据挖掘从数据下载处理质控到差异分析全流程分析步骤指南

0. 综合的教学视频介绍 GEO数据库挖掘分析作图全流程每晚11点在线教学直播录屏回放视频&#xff1a; https://www.bilibili.com/video/BV1rm42157CT/ GEO数据从下载到各种挖掘分析全流程详解&#xff1a; https://www.bilibili.com/video/BV1nm42157ii/ 一篇今年近期发表的转…

前瞻断言与后瞻断言:JavaScript 正则表达式的秘密武器

JavaScript 中的前瞻断言&#xff08;lookahead&#xff09;和后瞻断言&#xff08;lookbehind&#xff09;相信用过的小伙伴就知道它的威力了&#xff0c;在一些特定的需求场景下&#xff0c;可以做到四两拨千斤的作用&#xff0c;今天让我们来盘点一下在 JavaScript 正则表达…

微信小程序与本地MySQL数据库通信

微信小程序与本地MySQL数据库通信 因为本地MySQL服务器没有域名&#xff0c;也没有进行相应的请求操作封装&#xff0c;因此微信小程序没办法和数据库通信。 但是对于开发人员来说&#xff0c;没有数据库&#xff0c;那还能干撒&#xff1f;虽然我尝试过用json-server&#x…

简单搭建卷积神经网络实现手写数字10分类

搭建卷积神经网络实现手写数字10分类 1.思路流程 1.导入minest数据集 2.对数据进行预处理 3.构建卷积神经网络模型 4.训练模型&#xff0c;评估模型 5.用模型进行训练预测 一.导入minest数据集 MNIST--->raw--->test-->(0,1,2...) 10个文件夹 MNIST--->raw-…