人工智能大模型发展的新形势及其省思

在这里插入图片描述

作者简介

肖仰华,复旦大学计算机科学技术学院教授、博导,上海市数据科学重点实验室主任。研究方向为知识图谱、知识工程、大数据管理与挖掘。主要著作有《图对称性理论及其在数据管理中的应用》、《知识图谱:概念与技术》(合著)、《生成式语言模型与通用人工智能:内涵、路径与启示》(论文)等。

摘要

随着相关技术的不断进步,大模型发展呈现出与数据要素深度融合、其日益沉淀为基础设施、发展焦点从底座模型转移至应用生态等新的趋势。针对大模型产业发展呈现出的新态势、新动向,我们要树立大模型发展的全局观和整体观,积极采取加快建设人工智能教育体系、建立以智能科学为核心的跨学科研究体系、推动大模型与数据要素协同发展并坚持多元化的大模型发展路径等新的应对举措。作为一种先进技术,大模型具有两面性,我们在积极采取措施促进其良性发展并释放其应用价值的同时,也要密切关注其滥用、误用与恶用所带来的虚假内容泛滥、影响人类心智和能力的发展与培育等负面问题,未雨绸缪积极做好风险治理与管控。

大模型发展的新态势

**大模型产业发展焦点从基础模型走向应用生态。**当大模型具备了人类智能的基本能力,如何用好大模型就成为了重点。值得强调的是,用好大模型绝不比研发大模型容易。事实上,自ChatGPT诞生至今,大模型并未给人类切实创造多少价值,这一窘状不应归咎于大模型自身的不足,而应该归因于人类自身能力的不足,特别是大模型应用水平的不足。大模型好比武侠小说中的利器,唯有强者才能驾驭这一利器,进而释放其价值。大部分人对于大模型的应用可能就仅限于闲聊、文字润饰。大模型本质上是智者的利器,换言之,只有洞悉大模型特性的知识精英或者行家里手才能将大模型的能力淋漓尽致地发挥出来。用好大模型本身就是个人、组织、国家未来的核心竞争力之一。

大模型发展的新举措

跨学科研究另一个方向的重要使命在于“为机器立心、为智能立命”。加深对于AGI本身的认知,建立理解AGI的概念框架,是推动AGI进一步发展以及帮助人类更好地驾驭与管控AGI的根本所在。人工智能以人类智能为拓版,而今却日益呈现出其专有特性。几千年来,人类已经建立起的对于人以及由人所构成社会的认知体系与理论框架,这是我们理解AI的心智以及智能体社会的有益参考。至少可以说,以人类为模板去理解AI是理解AI的第一步。随着AGI日益融入人类生活,如何理解与控制AI个体以及群体的心智、角色、行为,是实现AI安全可控的关键,是促使AI造福人类而不致危害人类的关键。为AI“立心立命”,让AI守规守矩,是智能时代到来之前我们需要做好充分应对准备的难题之一。

如果说更大规模参数的大模型是在帮我们探索智能的极限,那么更加小型而实

一个数字分身或者智能代理泛滥的时代又会是个怎样的时代呢?这是个更加值得深入思考的问题。你的数字分身或者AI代理在多大程度上能够行使你的主体意志,每个个体又在多大程度上能够让渡主体意志给AI呢?未来社会可能将日益演变成人类及其AI代理构成的社会,人与人的关系已经无法完整地定义社会关系,人与自己的AI代理、AI代理与AI代理,成为了社会关系的必要构成。社会科学的全部内涵因此而被刷新,重建我们的社会科学成为新的历史使命。AI智能体社会的到来,势必要求重新建构人类的伦理框架、道德体系、情感框架,构建和谐的人机关系将成为社会关系发展的重要目标之一,而不单单是人与人的关系。

AI代理参与的社会也将重塑人类的生活方式和行业业态。比如,出于功能性的消费活动完全可以由AI代理完成,人类消费的真正价值可能仅在于情感体验,如精挑细选的乐趣,而不再是买到商品这一朴素目的。从这个意义上来讲,购物的功能性内涵将消失。再比如内容生产与传播行业,如果AI代理将代替人类成为内容生产与传播的主要受众或对象,那么传统的面向人的图书编辑与出版、新闻内容的生成与传播将何去何从?一定程度上可以说,几乎所有的行业都要正视一个新的事实:服务对象从人变成人的AI代理,而这一变化势必要求重塑传统行业形态。

大模型发展过程中的风险管控

作为一种先进技术,大模型具有两面性,运用得当将成为先进生产力,但运用不当也可能成为巨大破坏力。安全可控必须是发展大模型的前提,为此,我们必须未雨绸缪,对未来大模型的大规模应用所带来的诸多负面问题做好提前研判与积极准备,从全局考虑AI应用问题,不能唯生产力论AI,而应兼顾AI应用所带来的方方面面影响,并深入研判AI应用的长期影响。

**加大大模型风险管控力度,加强大模型合规应用的制度建设。**大模型会对人类社会的哪些方面产生影响?这种提问已不合时宜。其相反的问题更有价值,即人类社会的哪些方面不会受到大模型影响?答案可能是“并不多”,大模型对人类社会的影响是广泛而深远的。人类社会方方面面的发展都需要运用人类的智力,而但凡人类智识所及之处皆可为大模型用武之地。正是基于这个原因,大模型的负面影响,更加值得我们高度关注。

随着大模型的普及应用,其所带来的负面问题日益显现,如虚假内容泛滥、价值观偏差、侵犯版权、隐私泄露、人群偏见、新型信息茧房等。其一是大模型驱动的AIGC技术使得内容生成与制作的门槛大大降低,虚假内容呈现泛滥态势。传媒生态所赖以存在的信息真实性前提受到前所未有的挑战。其二是大模型存在暴露偏差等问题,即大模型训练语料可能存在各种偏差与倾向,比如种族偏见、性别偏见、文化偏见、意识形态偏见。其三是大模型给版权保护带来了前所未有的挑战。一方面,大模型厂商可能在未经授权的情况下使用版权所有者的数据进行训练。另一方面,大模型的使用者可能使用大模型生成的内容作为自主知识产权的内容。由此可见,大模型给传统知识产权概念框架与实践操作均带来了重大挑战。其四是大模型训练数据对用户隐私的侵犯,进而对传统的隐私框架提出了新要求。例如一个教授在学校网站上公开了自己的联系方式,但这并不意味着该教授希望自己的联系方式被大模型习得而为所有人认知。其五是新型信息茧房的形成,随着大模型日益成为各类互联网信息系统的新基座,信息消费者的认知将难以挣脱由大模型所编织的新型信息茧房。这些随大模型普及应用而正在逐渐显现的问题都需要有关部门加强研究,加大大模型风险管控力度,加快大模型合规应用的制度建设。

**AI大规模滥用对人类自身发展带来的长期负面影响。**显性的负面影响容易觉察,但更为致命的则是不易觉察的问题。因此,我们更需要高度警惕AI(特别是AGI技术)大规模滥用带来的隐性、长期的负面影响。所谓AI滥用是指过度地、不加限制地使用AI技术,这种滥用往往出于眼前的或者短期巨大利益的考量而有意无意忽视AI发展的长期问题,最终对人类福祉或者特定群体利益造成长期的难以弥补的侵害。AI滥用往往有着温和甚至是极具吸引力的外表,如果在推动AI成为先进生产力的过程中对AI的应用不加以区分与选择,对AI的负面问题视而不见,久而久之,AI滥用会像温水煮青蛙一般以一种缓慢而难以察觉的进程给人类带来难以挽回的伤害。鉴于此,我们需高度警惕AI的滥用问题,认识到AI应用应该“有所为、有所不为”,尽快为AI的安全应用设立基本原则。

从本质上看,大规模AI的长期滥用可能会带来人之为人的本性倒退。技术的每一次进步都可能带来人类某种能力的倒退,例如输入法技术的进步带来的是很多人的提笔忘字。但是,当达到人类智力水平的AGI大量代替人类脑力劳动时,随之而来的可能的脑力倒退却是人类难以承受的。具体而言,在个体具备某项能力之前(比如写作),不加克制地滥用AI的相应能力,将会阻碍个体获得此项能力。因而即使计算机早就能代替人类进行计算,但是我们的儿童必须付诸艰苦的训练掌握基本的计算能力。我们必须警惕人类心智的核心能力因为AI的滥用而倒退,人类心智水平的倒退,势必带来主体意志的逐步消退,而AI对于人类主体意志的侵犯,将导致难以承受的后果。

由此可见,无论AI技术发展到何种水平,AI应用都应该以保障人性和人类智能的核心素养与能力的充分发展为前提。AI应用应该为人类智力、能力的训练与实践留下充足的机会和空间,面向青少年的基础教育阶段恰恰是人类核心能力的形成时期,因而对于此阶段的AI应用应高度谨慎。同时,人类社会的大部分工作岗位,都必须保留特定规模的人群从事相应的手工工作,人类的所有技术应该像非物质文化遗产一样,指定足够规模的人类群体进行传承和发展,而AI应用应该适当“留白”。

**生产关系、社会价值观念、文化艺术创作等与AI生产力的适应性问题。**作为先进生产力,大模型对整个社会和各行各业进行全面渗透并产生革命性影响几乎是不可避免的。这就要求关系到价值观念、伦理体系、文化教育、生产关系等社会发展的方方面面都要作出积极变革和适应性调整,才能适应这种先进生产力的发展。

从短期来看,大模型等AGI技术将给就业市场带来直接影响。AGI应用的过程本质上就是AI劳动力逐步代替人类劳动力的过程,在这个过程中,越来越多的任务、工作逐步交给了效率更高、效果更好的机器。而AI代替人类的过程必须是缓慢、渐进、有序的过程,以避免剧烈的就业结构调整所带来的社会震荡。从更长时期的范围来看,大规模AI应用也可能影响现有的社会阶层结构。未来,因为AI智能水平参考线的存在,人类群体将可能被分为AI智识水平之上和之下两大层次。对于人类个体而言,跨越AI的智识水平线将变得日趋困难。随之可能带来的阶层固化甚至对立是需要正视的问题。此外,AI无节制地介入人类情感生活会让人迷失于虚拟的情感世界、甚至产生畸形的情感依赖。人与人之间的真挚情感将可能被人机虚拟情感所干扰,进而引发人类情感混乱。

大规模AI应用对人类思想、文化、艺术等方面产生的更长期的影响同样值得注意。当前,生成式人工智能已经涉足音乐、绘画、影视等几乎一切人类的艺术创作形式。人类的生命是有限的,而即使人类生命延长似乎也无法赶上艺术品生产的速度,那么,人类在有限的生命里何以享受这过于丰盛的艺术盛宴。历史上,人类从未像今天一样面临窘境:我们淹没在审美的海洋中,试问,我们会不会因此而窒息呢?如果人类个体的一生都处于审美的高亢兴奋体验之中,这样的人生又有怎样的价值与意义呢?美之泛滥是否会消灭美的本身呢?生成式人工智能的泛滥将会打破美的稀缺性,而这可能进一步消弭审美需求,进而影响传统艺术形式的发展。AI创作似乎正在快速穷尽艺术创作的组合空间,比如AI生成音乐可能很快穷举我们所能感知的绝大部分曲调,继而危及音乐这种艺术形式的存在。

为使社会发展能够以和谐的方式适应人工智能这一先进生产力,我国应充分发挥在统筹社会方面的制度优势,在生产关系调整、教育体系革新等方面作出富有前瞻性与建设性的系统谋划,并积极、严密、细致地推进相应的布局调整,避免出现剧烈冲击和较大的震荡。目前我国正处于全面深化改革的关键时期,进一步全面深化改革,要抓住主要矛盾和矛盾的主要方面,“进一步解放和发展社会生产力、增强社会活力,推动生产关系和生产力、上层建筑和经济基础更好相适应”。推动以大模型为代表的AGI技术与生产关系、上层建筑更好地适应,无疑是践行这一方针的具体措施之一。

结语

当前,大模型发展日益呈现出与数据要素融合发展、其逐渐沉淀为基础设施、发展焦点从底座模型转移至应用生态等新的趋势。以大模型为代表的AGI将成为先进生产力的代表,我们在拥抱这一先进生产力的兴奋之余,也要密切关注其滥用、误用与恶用所带来的负面问题。要以更为深入的思考、更加长远的眼光、更加全面的梳理和更加精准的研判,做好全面、积极、主动的应对,确保AI成为人类之福,而不是人类之祸。

在AGI快速发展的时代,如何打发闲暇时光,如何安置灵魂成为人类需要直面的问题。从表面上看这似乎是个幸福的烦恼,然而,笔者更愿意称其为“戴着和善面具的恶魔”。未来,人类应对AGI的利用加以适当引导与控制。即便有AI的助力,以卓越精神仰望星空也仍需要付诸常人所不能想象的艰辛和长期坚持。

古代欧洲的贵族们往往都有贴心的管家帮助其料理与经营生活,这成就了一批贵族精英代表人类专心致志、心无旁骛地探索未知世界,但更为常见的情形却是养出了大批“好吃懒做、肥头大耳”的精神侏儒。AGI日渐成为人类的贴心管家,AI代理人类社会似乎成为必然趋势,而在这一过程中人类更应奋发向上,借助AI力量去勤奋地探索未知世界,不断开辟新的认知疆域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/380092.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微服务实战系列之玩转Docker(二)

前言 上一篇,博主对Docker的背景、理念和实现路径进行了简单的阐述。作为云原生技术的核心之一,轻量级的容器Docker,受到业界追捧。因为它抛弃了笨重的OS,也不带Data,可以说,能够留下来的都是打仗的“精锐…

Python游戏开发之制作捕鱼达人游戏-附源码

制作一个简单的“捕鱼达人”游戏可以使用Python结合图形界面库,比如Pygame。Pygame是一个流行的Python库,用于创建视频游戏,它提供了图形、声音等多媒体的支持。以下是一个基础的“捕鱼达人”游戏框架,包括玩家控制一个炮台来射击…

Java性能优化-书写高质量SQL的建议(如何做Mysql优化)

场景 Mysql中varchar类型数字排序不对踩坑记录: Mysql中varchar类型数字排序不对踩坑记录_mysql vachar排序有问题-CSDN博客 为避免开发过程中针对mysql语句的写法再次踩坑,总结开发过程中常用书写高质量sql的一些建议。 注: 博客&#…

特征工程方法总结

方法有以下这些 首先看数据有没有重复值、缺失值情况 离散:独热 连续变量:离散化(也成为分箱) 作用:1.消除异常值影响 2.引入非线性因素,提升模型表现能力 3.缺点是会损失一些信息 怎么分:…

【C++】—— 从 C 到 C++ (下)

【C】—— 从 C 到 C (下) 六、引用6.1、什么是引用6.2、引用在传参的使用6.2.1、例一6.2.2、例二 6.3、引用在做返回值的使用6.4、引用的特性6.5、引用的使用总结6.6、 c o n s t const const 引用6.6.1、 c o n s t const const 引用的规则6.6.2、 c o…

福派斯三文鱼猫粮,养猫新手的福音,让猫咪爱上吃饭!

猫粮的选择对于猫咪的健康和日常饮食至关重要。福派斯三文鱼猫粮作为一款备受关注的产品,它在市场上表现如何呢?下面我们将从几个关键方面深入探讨如何选择猫粮,并详细分析福派斯三文鱼猫粮的优缺点。 一、了解猫咪的独特需求 首先&#xff0…

[Redis]典型应用——分布式锁

什么是分布式锁? 在一个分布式系统中,也会涉及到多个节点访问同一个公共资源的情况。此时就需要通过锁来做互斥控制,避免出现类似于"线程安全"的问题 举个例子,在平时抢票时,多个用户可能会同时买票&#…

ubuntu源码安装Odoo

序言:时间是我们最宝贵的财富,珍惜手上的每个时分 Odoo具有非常多的安装方式,除了我最爱用的 apt-get install,我们还可以使用git拉取Odoo源码进行安装。 本次示例于ubuntu20.04 Desktop上进行操作,理论上在ubuntu14.04之后都可以用此操作。 …

第1关 -- Linux 基础知识

闯关任务 完成SSH连接与端口映射并运行hello_world.py ​​​​ ssh -p 37367 rootssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyCheckingno可选任务 1 将Linux基础命令在开发机上完成一遍 可选任务 2 使用 VSCODE 远程连接开发机并创建一个conda环境 …

关于c#的简单应用三题

#region 找出100以内与7有关的数并打印&#xff1a; public static void Print() { int sum 0; Console.WriteLine("100以内与7有关的数有&#xff1a;"); for (int i 1; i < 100; i) { if (i % 7 0) { sum; …

【AI教程-吴恩达讲解Prompts】第1篇 - 课程简介

文章目录 简介Prompt学习相关资源 两类大模型原则与技巧 简介 欢迎来到面向开发者的提示工程部分&#xff0c;本部分内容基于吴恩达老师的《Prompt Engineering for Developer》课程进行编写。《Prompt Engineering for Developer》课程是由吴恩达老师与 OpenAI 技术团队成员 I…

Flink HA

目录 Flink HA集群规划 环境变量配置 masters配置 flink-conf.yaml配置 测试 Flink HA集群规划 FLink HA集群规划如下&#xff1a; IP地址主机名称Flink角色ZooKeeper角色192.168.128.111bigdata111masterQuorumPeerMain192.168.128.112bigdata112worker、masterQuorumPee…

js 实现扫雷游戏,源码开放,支持npm引入使用

本人开发的js版本扫雷游戏 体验地址 | Github Minesweeper game Sponsors Install and use npm i minesweeper-gameimport {Map} from minesweeper-game;const map new Map();Reset Map map.reset();TS Statement interface IMapOptions {width?: number; // Map sizeh…

JMeter:BeanShell向JSR223迁移过程遭遇的java标准库不可用问题-如何切换JDK版本

前言 看过我前面文章的人想必记得我因使用BeanShell&#xff0c;遭遇过JMeter OOM的问题。所以想起官网频频提示的&#xff0c;性能测试中建议使用JSR223groovy来代替BeanShell。于是&#xff0c;开启BeanShell脚本向JSR223迁移之旅。 什么是JSR223 JSR223全称为Java Specif…

Python爬虫(1) --基础知识

爬虫 爬虫是什么&#xff1f; spider 是一种模仿浏览器上网过程的一种程序&#xff0c;可以获取一些网页的数据 基础知识 URL 统一资源定位符 uniform resource locator http: 超文本传输协议 HyperText Transfer Protocol 默认端口 80 https: 安全的超文本传输协议 security…

jenkins+gitlab+harbor+maven自动化容器部署

一、gitlab安装配置 1.1、安装 由于比较懒啊&#xff01;这里就直接使用docker安装了啊&#xff01; 没事先更新一个yum源&#xff1a;yum update -y 整一个gitlab镜像&#xff1a;docker pull gitlab/gitlab-ce 运行一个gitlab容器&#xff1a;docker run -d -p 8443:443 -p…

十七、【机器学习】【非监督学习】- K-均值 (K-Means)

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…

[论文笔记] pai-megatron-patch Qwen2-CT 长文本rope改yarn

更改: # Copyright (c) 2024 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License a…

MongoDB常用命令大全,概述、备份恢复

文章目录 一、MongoDB简介二、服务启动停止、连接三、数据库相关四、集合操作五、文档操作六、数据备份与恢复/导入导出数据6.1 mongodump备份数据库6.2 mongorestore还原数据库6.3 mongoexport导出表 或 表中部分字段6.4 mongoimport导入表 或 表中部分字段 七、其他常用命令八…

怎么关闭 Windows 安全中心,手动关闭 Windows Defender 教程

Windows 安全中心&#xff08;也称为 Windows Defender Security Center&#xff09;是微软 Windows 操作系统内置的安全管理工具&#xff0c;用于监控和控制病毒防护、防火墙、应用和浏览器保护等安全功能。然而&#xff0c;在某些情况下&#xff0c;用户可能需要关闭 Windows…