FreeRTOS的中断管理、临界资源保护、任务调度

什么是中断?

简介:让CPU打断正常运行的程序,转而去处理紧急的事件(程序),就叫中断。

中断优先级分组设置 

        ARM Cortex-M 使用了 8 位宽的寄存器来配置中断的优先等级,这个寄存器就是中断优先级来配置寄存器。

        但STM32,只用了中断优先级配置寄存器的高4位 [7 : 4],所以STM32提供了最大16级的中断优先等级。

STM32 的中断优先级可以分为抢占优先级和子优先级。

抢占优先级: 抢占优先级高的中断可以打断正在执行但抢占优先级低的中断。 

子优先级:当同时发生具有相同抢占优先级的两个中断时,子优先级数值小的优先执行。

注意:中断优先级数值越小越优先。

一共有 5 种分配方式,对应着中断优先级分组的 5 个组。

特点: 

1、低于configMAX_SYSCALL_INTERRUPT_PRIORITY优先级的中断里才允许调用FreeRTOS 的API函数。

2、建议将所有优先级位指定为抢占优先级位,方便FreeRTOS管理。

3、中断优先级数值越小越优先,任务优先级数值越大越优先。

中断相关寄存器 

三个系统中断优先级配置寄存器,分别为 SHPR1、 SHPR2、 SHPR3 。

SHPR1寄存器地址:0xE000ED18。

SHPR2寄存器地址:0xE000ED1C。

SHPR3寄存器地址:0xE000ED20。

FreeRTOS如何配置PendSV和Systick中断优先级? 

中断相关寄存器

三个中断屏蔽寄存器,分别为 PRIMASK、 FAULTMASK 和BASEPRI  。

FreeRTOS所使用的中断管理就是利用的BASEPRI这个寄存器。         

BASEPRI:屏蔽优先级低于某一个阈值的中断。

比如: BASEPRI设置为0x50,代表中断优先级在5~15内的均被屏蔽,0~4的中断优先级正常执行。

BASEPRI:屏蔽优先级低于某一个阈值的中断,当设置为0时,则不关闭任何中断。

关中断程序示例:

中断优先级在5 ~ 15的全部被关闭 。

开中断程序示例:

FreeRTOS中断管理就是利用BASEPRI寄存器实现的 。

中断管理  

        在 RTOS 中,需要应对各类事件。这些事件很多时候是通过硬件中断产生,怎么处理呢?
        假设当前系统正在运行 Task1 时,用户按下了按键,触发了按键中断。这个中断的处理流程如下:
        CPU 跳到固定地址去执行代码,这个固定地址通常被称为中断向量,这个跳转时硬件实现。
        执行代码做什么?
        保存现场:Task1 被打断,需要先保存 Task1 的运行环境,比如各类寄存器的值。
        分辨中断、调用处理函数 ( 这个函数就被称为 ISR interrupt service routine)
        恢复现场:继续运行 Task1 ,或者运行其他优先级更高的任务你要注意到,ISR 是在内核中被调用的, ISR 执行过程中,用户的任务无法执行。 ISR要尽量快,否则:其他低优先级的中断无法被处理:实时性无法保证用户任务无法被执行:系统显得很卡顿。
        
        如果这个硬件中断的处理,就是非常耗费时间呢?对于这类中断的处理就要分为 2 部分:
        ISR:尽快做些清理、记录工作,然后触发某个任务
        任务:更复杂的事情放在任务中处理
        所以:需要 ISR 和任务之间进行通信要在 FreeRTOS 中熟练使用中断,有几个原则要先说明:
        FreeRTOS 把任务认为是硬件无关的,任务的优先级由程序员决定,任务何时运行由调度器决定。
        ISR 虽然也是使用软件实现的,但是它被认为是硬件特性的一部分,因为它跟硬件密切相关。
        何时执行?由硬件决定。
        
        哪个 ISR 被执行?由硬件决定。
        
        ISR 的优先级高于任务:即使是优先级最低的中断,它的优先级也高于任务。任务只有在没有中断的情况下,才能执行。
      

两套 API 函数

        在任务函数中,我们可以调用各类 API 函数,比如队列操作函数:
        
        xQueueSendToBack。但是在 ISR 中使用这个函数会导致问题,应该使用另一个函数:
        
        xQueueSendToBackFromISR,它的函数名含有后缀"FromISR" ,表示 " ISR 中给队列发送
数据 "
        FreeRTOS 中很多 API 函数都有两套:一套在任务中使用,另一套在 ISR 中使用。后者的函数名含有"FromISR" 后缀。
        
        为什么要引入两套 API 函数?
        很多 API 函数会导致任务计入阻塞状态:
        
        运行这个函数的任务进入阻塞状态。
        比如写队列时,如果队列已满,可以进入阻塞状态等待一会。
        ISR 调用 API 函数时,ISR 不是"任务"ISR 不能进入阻塞状态。
        所以,在任务中、在 ISR 中,这些函数的功能是有差别的。

两套 API 函数列表 

 xHigherPriorityTaskWoken 参数

        xHigherPriorityTaskWoken 的含义是:是否有更高优先级的任务被唤醒了。如果为pdTRUE,则意味着后面要进行任务切换。
        还是以写队列为例。
        任务 A 调用 xQueueSendToBack() 写队列,有几种情况发生:
        队列满了,任务 A 阻塞等待,另一个任务 B 运行
        队列没满,任务 A 成功写入队列,但是它导致另一个任务 B 被唤醒,任务
        B 的优先级更高:任务 B 先运行
        队列没满,任务 A 成功写入队列,即刻返回
        可以看到,在任务中调用 API 函数可能导致任务阻塞、任务切换,这叫做 "context switch",上下文切换。这个函数可能很长时间才返回,在函数的内部实现了任务切换。
        xQueueSendToBackFromISR() 函数也可能导致任务切换,但是不会在函数内部进行切
换,而是返回一个参数:表示是否需要切换,函数原型与用法如下:
/* 
* 往队列尾部写入数据,此函数可以在中断函数中使用,不可阻塞
*/
BaseType_t xQueueSendToBackFromISR(QueueHandle_t xQueue,const void *pvItemToQueue,BaseType_t *pxHigherPriorityTaskWoken);
/* 用法示例 */
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
xQueueSendToBackFromISR(xQueue, pvItemToQueue, &xHigherPriorityTaskWoken);
if (xHigherPriorityTaskWoken == pdTRUE)
{/* 任务切换 */ 
}
        pxHigherPriorityTaskWoken 参数,就是用来保存函数的结果:是否需要切换
        *pxHigherPriorityTaskWoken 等于 pdTRUE :函数的操作导致更高优先级的任务就绪了,ISR 应该进行任务切换。
        *pxHigherPriorityTaskWoken 等于 pdFALSE :没有进行任务切换的必要
        为什么不在"FromISR" 函数内部进行任务切换,而只是标记一下而已呢?为了效率!
示例代码如下:
void XXX_ISR()
{int i;for (i = 0; i < N; i++){xQueueSendToBackFromISR(...); /* 被多次调用 */}
}
ISR 中有可能多次调用 "FromISR" 函数,如果在 "FromISR" 内部进行任务切换,会浪费时间。解决方法是:
        在"FromISR" 中标记是否需要切换。
        在 ISR 返回之前再进行任务切换。
        示例代码如下:
void XXX_ISR()
{int i;BaseType_t xHigherPriorityTaskWoken = pdFALSE;for (i = 0; i < N; i++){xQueueSendToBackFromISR(..., &xHigherPriorityTaskWoken); /* 被多次调用 */}/* 最后再决定是否进行任务切换 */if (xHigherPriorityTaskWoken == pdTRUE){/* 任务切换 */ }
}
        上述的例子很常见,比如 UART 中断:在 UART ISR 中读取多个字符,发现收到回车符时才进行任务切换。
        在 ISR 中调用 API 时不进行任务切换,而只是在 "xHigherPriorityTaskWoken" 中标记一下,除了效率,还有多种好处:
        效率高:避免不必要的任务切换。
        让 ISR 更可控:中断随机产生,在 API 中进行任务切换的话,可能导致问题更复杂。
        可移植性。
        在 Tick 中断中,调用 vApplicationTickHook() :它运行与 ISR ,只能使用 "FromISR"的函数
使用 "FromISR" 函数时,如果不想使用 xHigherPriorityTaskWoken 参数,可以设置为NULL。

怎么切换任务 

        FreeRTOS ISR 函数中,使用两个宏进行任务切换:

        portEND_SWITCHING_ISR ( xHigherPriorityTaskWoken );
        portYIELD_FROM_ISR ( xHigherPriorityTaskWoken );
        这两个宏做的事情是完全一样的,在老版本的 FreeRTOS 中,
        portEND_SWITCHING_ISR 使用汇编实现
        portYIELD_FROM_ISR 使用 C 语言实现
        
        新版本都统一使用 portYIELD_FROM_ISR 。使用示例如下:
void XXX_ISR()
{int i;BaseType_t xHigherPriorityTaskWoken = pdFALSE;for (i = 0; i < N; i++){xQueueSendToBackFromISR(..., &xHigherPriorityTaskWoken); /* 被多次调用 */}/* 最后再决定是否进行任务切换* xHigherPriorityTaskWoken 为 pdTRUE 时才切换*/portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
}

中断的延迟处理

        前面讲过,ISR 要尽量快,否则: 其他低优先级的中断无法被处理:实时性无法保证,用户任务无法被执行:系统显得很卡顿。
        如果运行中断嵌套,这会更复杂,ISR 越快执行约有助于中断嵌套。
        如果这个硬件中断的处理,就是非常耗费时间呢?对于这类中断的处理就要分为 2 部分:
        ISR:尽快做些清理、记录工作,然后触发某个任务。
        任务:更复杂的事情放在任务中处理。
        这种处理方式叫" 中断的延迟处理 "(Deferring interrupt processing) ,处理流程如下图所示:
        t1:任务 1 运行,任务 2 阻塞。
        t2:发生中断。
        该中断的 ISR 函数被执行,任务 1 被打断。
        ISR 函数要尽快能快速地运行,它做一些必要的操作 ( 比如清除中断 ) ,然后唤醒任务 2。
        t3:在创建任务时设置任务 2 的优先级比任务 1 ( 这取决于设计者 ) ,所以ISR 返回后,运行的是任务 2 ,它要完成中断的处理。任务 2 就被称为"deferred processing task",中断的延迟处理任务。
        t4:任务 2 处理完中断后,进入阻塞态以等待下一个中断,任务 1 重新运行。

中断与任务间的通信

前面讲解过的队列、信号量、互斥量、事件组、任务通知等等方法,都可使用。要注意的是,在 ISR 中使用的函数要有 "FromISR" 后缀。

资源管理(Resource Management)

        在前面讲解互斥量时,引入过临界资源的概念。在前面课程里,已经实现了临界资源的互斥访问。
        本章节的内容比较少,只是引入两个功能:屏蔽/ 使能中断、暂停 / 恢复调度器。要独占式地访问临界资源,有 3 种方法:
        公平竞争:比如使用互斥量,谁先获得互斥量谁就访问临界资源,这部分内容前面讲过。
        谁要跟我抢,我就灭掉谁:
        
        中断要跟我抢?我屏蔽中断。
        其他任务要跟我抢?我禁止调度器,不运行任务切换。

屏蔽中断

        屏蔽中断有两套宏:任务中使用、ISR 中使用:
        任务中使用: taskENTER_CRITICA()/taskEXIT_CRITICAL()
        ISR 中使用: taskENTER_CRITICAL_FROM_ISR()/taskEXIT_CRITICAL_FROM_ISR()

在任务中屏蔽中断 

在任务中屏蔽中断的示例代码如下:
/* 在任务中,当前时刻中断是使能的
* 执行这句代码后,屏蔽中断
*/
taskENTER_CRITICAL();
/* 访问临界资源 */
/* 重新使能中断 */
taskEXIT_CRITICAL();
taskENTER_CRITICA()/taskEXIT_CRITICAL() 之间:
低优先级的中断被屏蔽了:优先级低于、等于 configMAX_SYSCALL_INTERRUPT_PRIORITY
高优先级的中断可以产生:优先级高于 configMAX_SYSCALL_INTERRUPT_PRIORITY
但是,这些中断 ISR 里,不允许使用 FreeRTOS API 函数
任务调度依赖于中断、依赖于 API 函数,所以:这两段代码之间,不会有任务调度产生
这套 taskENTER_CRITICA()/taskEXIT_CRITICAL() 宏,是可以递归使用的,它的内部会记录嵌套的深度,只有嵌套深度变为 0 时,调用 taskEXIT_CRITICAL() 才会重新使能中断。
使用 taskENTER_CRITICA()/taskEXIT_CRITICAL() 来访问临界资源是很粗鲁的方法:
中断无法正常运行。
任务调度无法进行。
 所以,之间的代码要尽可能快速地执行。

ISR 中屏蔽中断

要使用含有 "FROM_ISR" 后缀的宏,示例代码如下:
void vAnInterruptServiceRoutine( void )
{/* 用来记录当前中断是否使能 */UBaseType_t uxSavedInterruptStatus;/* 在 ISR 中,当前时刻中断可能是使能的,也可能是禁止的* 所以要记录当前状态, 后面要恢复为原先的状态* 执行这句代码后,屏蔽中断*/uxSavedInterruptStatus = taskENTER_CRITICAL_FROM_ISR();/* 访问临界资源 *//* 恢复中断状态 */taskEXIT_CRITICAL_FROM_ISR( uxSavedInterruptStatus );/* 现在,当前 ISR 可以被更高优先级的中断打断了 */
}
taskENTER_CRITICA_FROM_ISR()/taskEXIT_CRITICAL_FROM_ISR() 之间:
低优先级的中断被屏蔽了:优先级低于、等于 configMAX_SYSCALL_INTERRUPT_PRIORITY。
高优先级的中断可以产生:优先级高于 configMAX_SYSCALL_INTERRUPT_PRIORITY。
但是,这些中断 ISR 里,不允许使用 FreeRTOS API 函数。
任务调度依赖于中断、依赖于 API 函数,所以:这两段代码之间,不会有任务调度产生。

暂停调度器

        如果有别的任务来跟你竞争临界资源,你可以把中断关掉:这当然可以禁止别的任务
运行,但是这代价太大了。它会影响到中断的处理。
        
        如果只是禁止别的任务来跟你竞争,不需要关中断,暂停调度器就可以了:在这期间,中断还是可以发生、处理。使用这 2 个函数来暂停、恢复调度器:
/* 暂停调度器 */
void vTaskSuspendAll( void );
/* 恢复调度器
* 返回值: pdTRUE 表示在暂定期间有更高优先级的任务就绪了
* 可以不理会这个返回值
*/
BaseType_t xTaskResumeAll( void );
示例代码如下:
vTaskSuspendScheduler();
/* 访问临界资源 */
xTaskResumeScheduler();
        这套 vTaskSuspendScheduler()/xTaskResumeScheduler() 宏,是可以递归使用的,它的内部会记录嵌套的深度,只有嵌套深度变为 0 时,调用 taskEXIT_CRITICAL() 才会重新使能中断。

FreeRTOS临界段代码保护

临界段代码保护简介

什么是临界段:临界段代码也叫做临界区,是指那些必须完整运行,不能被打断的代码段。

适用场合如:

临界段代码保护函数介绍 

临界区是直接屏蔽了中断,系统任务调度靠中断,ISR也靠中断。

任务调度 

开启任务调度器

vTaskStartScheduler() :

作用:用于启动任务调度器,任务调度器启动后, FreeRTOS 便会开始进行任务调度

该函数内部实现,如下:

1、创建空闲任务。

2、如果使能软件定时器,则创建定时器任务。

3、关闭中断,防止调度器开启之前或过程中,受中断干扰,会在运行第一个任务时打开中断。

4、初始化全局变量,并将任务调度器的运行标志设置为已运行。

5、初始化任务运行时间统计功能的时基定时器。

6、调用函数 xPortStartScheduler() 。

xPortStartScheduler()

作用:该函数用于完成启动任务调度器中与硬件架构相关的配置部分,以及启动第一个任务。

该函数内部实现,如下:

1、检测用户在 FreeRTOSConfig.h 文件中对中断的相关配置是否有误。

2、配置 PendSV 和 SysTick 的中断优先级为最低优先级。

3、调用函数 vPortSetupTimerInterrupt()配置 SysTick。

4、初始化临界区嵌套计数器为 0。

5、调用函数 prvEnableVFP()使能 FPU。

6、调用函数 prvStartFirstTask()启动第一个任务。 

启动第一个任务

prvStartFirstTask ()     /* 开启第一个任务

vPortSVCHandler () 

注意:SVC中断只在启动第一次任务时会调用一次,以后均不调用。

出栈/压栈汇编指令详解 

任务切换 

注意:任务切换的过程在PendSV中断服务函数里边完成 。

PendSV中断是如何触发的? 

1、滴答定时器中断调用。

2、执行FreeRTOS提供的相关API函数:portYIELD() 。

本质:通过向中断控制和状态寄存器 ICSR 的bit28 写入 1 挂起 PendSV 来启动 PendSV 中断

 

查找最高优先级任务 

vTaskSwitchContext( )                    /* 查找最高优先级任务 */

taskSELECT_HIGHEST_PRIORITY_TASK( )    /* 通过这个函数完成 */ 

前导置零指令 

获取最高优先级任务的任务控制块 

总结

以上就是FreeRTOS的中断管理、资源管理、任务调度的核心内容。我讲的是关键点,不过也很片面,内部实现过程更为精妙,读者如果水平较高,可以自己去研究一下,我就不去研究了,因为确实有点难,会到这一步就够了。        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/380156.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 OpenCV 和 YOLO 模型进行实时目标检测并在视频流中显示检测结果

文章目录 Github官网简介视频帧推理视频设备ID安装依赖 检测示例分类示例姿势估计 Github https://github.com/ultralytics/ultralytics 官网 https://docs.ultralytics.com/zhhttps://docs.ultralytics.com/zh/quickstart/ 简介 Ultralytics 是一个软件公司&#xff0c;专…

基于 CNN(二维卷积Conv2D)+LSTM 实现股票多变量时间序列预测(PyTorch版)

前言 系列专栏:【深度学习&#xff1a;算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域&#xff0c;讨论了各种复杂的深度神经网络思想&#xff0c;如卷积神经网络、循环神经网络、生成对…

Element UI DatePicker选择日期范围区间默认显示前一个月和本月

要求&#xff1a;点击el-date-picker选择时间范围时&#xff0c;默认展开当月和上个月。 但是Element UI的组件默认展开的是本月和下一个月&#xff0c;如下图所示&#xff1a; 改为 <span click"changeInitCalendarRange"><el-date-picker v-model"r…

8月长沙学术会议:经济金融发展国际会议(ICEFD 2024)

经济金融发展国际会议&#xff08;ICEFD 2024&#xff09;将于2024年8月20-22日在长沙盛大举行。本次会议汇聚了国内外众多高校、科研机构、企业界及其他相关领域的专家学者&#xff0c;共同探讨经济金融发展的新趋势、新挑战和新机遇。 长沙&#xff0c;这座历史悠久的文化名…

Android车载MCU控制音量和ARM控制音量的区别和优缺点—TEF6686 FM/AM芯片

不要嫌前进的慢&#xff0c;只要一直在前进就好 文章目录 前言一、系统架构图1.MCU控制音量的架构图&#xff08;老方法&#xff09;2.ARM控制音量的架构图&#xff08;新方法&#xff09; 二、为啥控制音量不是用AudioManager而是执着去直接控制TDA7729&#xff1f;三、MCU控制…

wls2下的centos使用桥接模式连接宿主机网络独立静态ip

前提&#xff1a;wsl2已安装&#xff0c;可正常更新 1.在控制面板中&#xff0c;打开开启或关闭windows功能&#xff0c;将里面的 Hyper-V功能打开&#xff0c;此处涉及重启 2. 按一下win键&#xff0c;输入hy&#xff0c;上面可以看到Hyper-V Manager,点进去 3.选择右边的 Vi…

【C语言初阶】C语言数组基础:从定义到遍历的全面指南

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ ⏩收录专栏⏪&#xff1a;C语言 “ 登神长阶 ” &#x1f921;往期回顾&#x1f921;&#xff1a;C语言函数 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀数组 &#x1f4d2;1. 什么是数组…

npm install报错:npm error ERESOLVE could not resolve

从git上拉取一个新vue项目下来&#xff0c;在npm install时报错&#xff1a;npm error ERESOLVE could not resolve 有网友分析原因是因为依赖冲突导致报错&#xff0c;解决方法如下&#xff1a; # --legacy-peer-deps&#xff1a;安装时忽略所有peerDependencies&#xff0c…

大鲸鱼docker-compose单机容器集群编排工具

目录 一、Docker-compose 概述 二、Docker-compose简介 三、YML文件格式及编写注意事项 1.yml文件是什么 2.yml问价使用注意事项 3.yml文件的基本数据结构 四、Docker-compose 配置 1.Docker-Compose 配置常用字段 2.Docker Compose常用命令 3.使用Docker-compose创建…

win10删除鼠标右键选项

鼠标右键菜单时&#xff0c;发现里面的选项特别多&#xff0c;找一下属性&#xff0c;半天找不到。删除一些不常用的选项&#xff0c;让右键菜单变得干净整洁。 1、按下键盘上的“winR”组合按键&#xff0c;调出“运行”对话框&#xff0c;输入“regedit”命令&#xff0c;点击…

创建鸿蒙手机模拟器(HarmonyOS Emulator)

文 | Promise Sun 一.前提条件&#xff1a; 鸿蒙项目开发需要使用模拟器进行开发测试&#xff0c;但目前想在DevEco Studio开发工具中使用模拟器就必须到华为官网进行报名申请&#xff0c;参加“鸿蒙模拟器&#xff08;HarmonyOS Emulator&#xff09;Beta活动申请”。 申请审…

gitlab新建仓库

总贴 每个git网站都有不同的创建项目的方式&#xff0c;现在举例gitlab&#xff0c;其他例如gitee&#xff0c;gitcode&#xff0c;都是差不多的&#xff0c;自行百度 1![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/dae875d9048940c0aeb292c07d6a4a62.png)1和2是项…

C# 之工控机数据类型 高低位(大小端)、BitConverter、IsLittleEndian、字节数组转换(高低位)

八种基本数据类型&#xff1a;byte、short、int、long、float、double、boolean、char byte 8位、有符号的以二进制补码表示的整数 min : -128&#xff08;-2^7&#xff09; max: 127(2^7-1) default: 0 对应包装类&#xff1a;Byte short 16位、有符号的以二进制补码表示…

spark shell

1.进行shell命令行 spark-shell 2.创建RDD 2.1 读取文件创建RDD 2.1.1读取linux文件系统的文件创建RDD --需要保证每一个worker中都有该文件 val data1 sc.textFile("file:/opt/file/word.txt") 2.1.2读取hdfs文件系统上的文件创建RDD val data2sc.textFile("…

正点原子STM32(基于HAL库)6

目录 TFTLCD&#xff08;MCU 屏&#xff09;实验TFTLCD 简介TFTLCD 简介液晶显示控制器FSMC 简介FSMC 关联寄存器简介 硬件设计程序设计FSMC 和SRAM 的HAL 库驱动程序流程图程序解析 下载验证 LTDC LCD&#xff08;RGB 屏&#xff09;实验RGBLCD<DC 简介RGBLCD 简介LTDC 简介…

Proxyman for Mac v5.6.1 抓包调试工具

Mac分享吧 文章目录 效果一、下载软件二、功能三、开始安装1、双击运行软件&#xff0c;将其从左侧拖入右侧文件夹中&#xff0c;等待安装完毕2、应用程序显示软件图标&#xff0c;表示安装成功 四、运行测试1、打开软件 安装完成&#xff01;&#xff01;&#xff01; 效果 一…

虚拟机及其Debian(kali)安装

本机电脑为Windows10系统专业版&#xff0c;在此基础上安装VMware和系统&#xff08;Kali&#xff09; 步骤如下 一、安装 VMware Workstation Pro v16.2.4 安装步骤可参照网上博客&#xff0c;该步骤较简单&#xff0c;此处不做讲解。文件中共计两个&#xff0c;其中一个是激活…

.NET C# 配置 Options

.NET C# 配置 Options 使用 options 模式可以带来许多好处&#xff0c;包括清晰的配置管理、类型安全、易于测试和灵活性。但在使用过程中&#xff0c;也需要注意配置复杂性、性能开销和依赖框架等问题。通过合理设计和使用&#xff0c;可以充分发挥 options 模式的优势&#…

【.NET全栈】ASP.NET开发Web应用——计算器

文章目录 一、简单计算器二、复杂计算器 一、简单计算器 新建Web应用项目&#xff0c;窗体页面 窗体设计代码&#xff1a; <% Page Language"C#" AutoEventWireup"true" CodeBehind"Default.aspx.cs" Inherits"AdoDemo.Default"…

JVM:常用工具总结

文章目录 一、jstat工具 一、jstat工具 Jstat工具是JDK自带的一款监控工具&#xff0c;可以提供各种垃圾回收、类加载、编译信息等不同的数据。使用方法为&#xff1a;jstat -gc进程ID每次统计的时间间隔&#xff08;毫秒&#xff09;统计次数。 C代表Capacity容量&#xff0c…