【JavaScript 算法】拓扑排序:有向无环图的应用

在这里插入图片描述

🔥 个人主页:空白诗

在这里插入图片描述

文章目录

    • 一、算法原理
    • 二、算法实现
      • 方法一:Kahn算法
      • 方法二:深度优先搜索(DFS)
      • 注释说明:
    • 三、应用场景
    • 四、总结

在这里插入图片描述

拓扑排序(Topological Sorting)是一种线性排序方法,适用于有向无环图(DAG, Directed Acyclic Graph),它能够为图中的节点安排一个线性序列,使得对于图中的每一条有向边(u, v),顶点u在序列中出现在顶点v之前。拓扑排序在许多实际应用中都有重要作用,如任务调度、课程安排、编译依赖等。本文将详细介绍拓扑排序的原理、实现及其应用。


一、算法原理

拓扑排序的基本思想是:

  1. 选择一个入度为0的节点,将其输出到排序结果,并从图中删除该节点及其关联的所有边。
  2. 重复步骤1,直到所有节点都被输出,或者图中仍存在入度不为0的节点(此时图中存在环,无法进行拓扑排序)。

常用的两种实现拓扑排序的方法是Kahn算法和深度优先搜索(DFS)。


二、算法实现

方法一:Kahn算法

DFS

Kahn算法利用队列实现拓扑排序,通过不断删除入度为0的节点来构建拓扑序列。

/*** Kahn算法实现拓扑排序* @param {Object} graph - 图的邻接表表示* @return {string[]} - 拓扑排序结果*/
function kahnTopologicalSort(graph) {const inDegree = {}; // 记录每个节点的入度const queue = []; // 存储入度为0的节点const result = []; // 存储拓扑排序结果// 初始化入度表for (const node in graph) {inDegree[node] = 0;}// 计算每个节点的入度for (const node in graph) {for (const neighbor of graph[node]) {inDegree[neighbor]++;}}// 将入度为0的节点加入队列for (const node in inDegree) {if (inDegree[node] === 0) {queue.push(node);}}// 处理队列中的节点while (queue.length > 0) {const node = queue.shift(); // 取出队首节点result.push(node); // 将节点加入拓扑排序结果// 减少相邻节点的入度for (const neighbor of graph[node]) {inDegree[neighbor]--;// 如果相邻节点的入度为0,加入队列if (inDegree[neighbor] === 0) {queue.push(neighbor);}}}// 检查是否存在环if (result.length !== Object.keys(graph).length) {throw new Error("图中存在环,无法进行拓扑排序");}return result;
}// 示例
const graph = {A: ['C'],B: ['C', 'D'],C: ['E'],D: ['F'],E: ['H', 'F'],F: ['G'],G: [],H: []
};console.log(kahnTopologicalSort(graph)); // 输出: [ 'A', 'B', 'D', 'C', 'E', 'F', 'H', 'G' ]

方法二:深度优先搜索(DFS)

DFS

DFS方法通过递归遍历图,将访问过的节点存入栈中,最终从栈顶依次取出节点构建拓扑序列。

/*** 深度优先搜索实现拓扑排序* @param {Object} graph - 图的邻接表表示* @return {string[]} - 拓扑排序结果*/
function dfsTopologicalSort(graph) {const visited = new Set(); // 记录已访问的节点const stack = []; // 存储拓扑排序结果/*** 递归函数:DFS遍历节点* @param {string} node - 当前节点*/function dfs(node) {if (visited.has(node)) return;visited.add(node); // 标记节点为已访问for (const neighbor of graph[node]) {dfs(neighbor); // 递归访问相邻节点}stack.push(node); // 当前节点处理完毕,加入栈中}// 遍历所有节点,进行DFSfor (const node in graph) {dfs(node);}return stack.reverse(); // 返回栈的逆序,即拓扑排序结果
}// 示例
console.log(dfsTopologicalSort(graph)); // 输出: [ 'B', 'D', 'A', 'C', 'E', 'H', 'F', 'G' ]

注释说明:

  1. Kahn算法

    • inDegree:记录每个节点的入度。
    • queue:存储入度为0的节点。
    • result:存储拓扑排序结果。
    • 初始化入度表,并计算每个节点的入度。
    • 将入度为0的节点加入队列,处理队列中的节点,更新相邻节点的入度。
    • 最终检查是否存在环,返回拓扑排序结果。
  2. DFS方法

    • visited:记录已访问的节点。
    • stack:存储拓扑排序结果。
    • 递归遍历节点,将访问过的节点存入栈中,最终返回栈的逆序。

三、应用场景

  1. 任务调度:根据任务之间的依赖关系,确定任务的执行顺序。
  2. 课程安排:根据课程的先修关系,确定课程的学习顺序。
  3. 编译依赖:根据文件的依赖关系,确定编译的顺序。
  4. 数据处理:根据数据的依赖关系,确定处理的顺序。

四、总结

拓扑排序是一种用于有向无环图(DAG)的线性排序方法,通过Kahn算法和DFS方法可以实现拓扑排序,广泛应用于任务调度、课程安排、编译依赖和数据处理等场景。理解和掌握拓扑排序算法,对于解决实际问题具有重要意义。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/380449.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《汇编语言 基于x86处理器》- 读书笔记 - Visual Studio 2019 配置 MASM环境

安装 Visual Studio 2019 配置 MASM环境 下载 Visual Studio Installer安装 Visual Studio 20191. 双击运行2. 自定义安装内容3. 修改 MSVC 工具集版本4. 设置主题(可选)5. 安装代码高亮插件 AsmDude(可选)6. 通义灵码&#xff08…

2024年第二季度 DDoS 威胁趋势报告

2024 年上半年,Cloudflare 缓解了 850 万次 DDoS 攻击:第一季度 450 万次,第二季度 400 万次。总体而言,第二季度 DDoS 攻击数量环比下降了 11%,但同比增长了 20%。 DDoS 攻击分布(按类型和手段&#xff09…

面试官听了我说的单例设计模式,让我出门右转

⭐简单说两句⭐ ✨ 正在努力的小叮当~ 💖 超级爱分享,分享各种有趣干货! 👩‍💻 提供:模拟面试 | 简历诊断 | 独家简历模板 🌈 感谢关注,关注了你就是我的超级粉丝啦! &a…

Go语言之参数传递

文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 修改参数 假设你定义了一个函数,并在函数里对参数进行…

机器人开源调度系统OpenTcs6-架构运行分析

系统启动 启动 Kernel:加载核心应用,初始化系统配置和状态。 启动 Plant Overview:加载图形用户界面,初始化模型和用户界面。 模型导入和配置 在 Plant Overview 中导入或创建工厂布局模型。 配置路径、位置和车辆信息。 车辆连…

C语言 | Leetcode C语言题解之第240题搜索二维矩阵II

题目&#xff1a; 题解&#xff1a; bool searchMatrix(int** matrix, int matrixSize, int* matrixColSize, int target){int i 0;int j matrixColSize[0] - 1;while(j > 0 && i < matrixSize){if(target < matrix[i][j])j--;else if(target > matrix[…

达梦数据库的系统视图v$mal_link_status

达梦数据库的系统视图v$mal_link_status 在达梦数据库&#xff08;DM Database&#xff09;中&#xff0c;V$MAL_LINK_STATUS 是一个动态性能视图&#xff08;Dynamic Performance View&#xff09;&#xff0c;用于显示MAL&#xff08;Multi-threaded Architecture Link&…

cs224w笔记(p5)

链接预测任务的两种类型&#xff1a;随机缺失边&#xff1b;随时间演化边。 第一种假设可以以蛋白质之间的交互作用举例&#xff0c;缺失的是研究者还没有发现的交互作用。 第二种假设可以以社交网络举例&#xff0c;随着时间流转&#xff0c;人们认识更多朋友。 基于相似性进…

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第三十六章 Linux驱动初探

i.MX8MM处理器采用了先进的14LPCFinFET工艺&#xff0c;提供更快的速度和更高的电源效率;四核Cortex-A53&#xff0c;单核Cortex-M4&#xff0c;多达五个内核 &#xff0c;主频高达1.8GHz&#xff0c;2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…

Android 小白菜鸟从入门到精通教程

前言 Android一词最早出现于法国作家利尔亚当&#xff08;Auguste Villiers de l’Isle-Adam&#xff09;在1886年发表的科幻小说《未来的夏娃》&#xff08;L’ve future&#xff09;中。他将外表像人的机器起名为Android。从初学者的角度出发&#xff0c;通过通俗易懂的语言…

使用 useLazyAsyncData 提升数据加载体验

title: 使用 useLazyAsyncData 提升数据加载体验 date: 2024/7/19 updated: 2024/7/19 author: cmdragon excerpt: 摘要&#xff1a;本文介绍useLazyAsyncData函数在Nuxt 3中的使用&#xff0c;以提升数据加载体验。此函数支持异步获取数据并在组件中处理挂起与错误状态&…

[网鼎杯 2018]Fakebook

解法一 在robots.txt&#xff0c;可以发现/user.php.bak 下载下来是一段代码 <?phpclass UserInfo {public $name "";public $age 0;public $blog "";public function __construct($name, $age, $blog){$this->name $name;$this->age (…

spring-boot 整合 redisson 实现延时队列(文末有彩蛋)

应用场景 通常在一些需要经历一段时间或者到达某个指定时间节点才会执行的功能&#xff0c;比如以下这些场景&#xff1a; 订单超时提醒收货自动确认会议提醒代办事项提醒 为什么使用延时队列 对于数据量小且实时性要求不高的需求来说&#xff0c;最简单的方法就是定时扫描数据…

电机泵盖机器人打磨去毛刺,选德国进口高精度主轴

机器人打磨去毛刺该如何选择主轴呢&#xff1f;首先我们需要考虑的是工件的材质&#xff0c;电机泵盖通常使用铸铁、不锈钢、合金钢等金属材质&#xff0c;因此这类保持的硬度较高&#xff0c;一般会选择功率、扭矩较大的德国进口高精度主轴Kasite 4060 ER-S。 Kasite 4060 ER-…

【Espressif-ESP32S3】【VScode】安装【ESP-IDF】插件及相关工具链

一、ESP-IDF简介 二、VScode安装ESP-IDF插件 三、安装ESP-IDF、ESP-IDF-Tools以及相关工具链 四、测试例程&编译烧录 五、IDF常用指令 资料下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/15Q2rl2jpIaKfj5rATkYE6g?pwdGLNG 提取码&#xff1a;GLNG 一、ESP-…

浏览器缓存:强缓存与协商缓存实现原理有哪些?

1、强缓存&#xff1a;设置缓存时间的&#xff0c;那么在这个时间内浏览器向服务器发送请求更新数据&#xff0c;但是服务器会让其从缓存中获取数据。 可参考&#xff1a;彻底弄懂强缓存与协商缓存 - 简书 2、协商缓存每次都会向浏览器询问&#xff0c;那么是怎么询问的呢&…

「MQTT over QUIC」与「MQTT over TCP」与 「TCP 」通信测试报告

一、结论 在实车5G测试中「MQTT Over QUIC」整体表现优于「TCP」&#xff0c;可在系统架构升级时采用MQTT Over QUIC替换原有的TCP通讯&#xff1b;从实现原理上基于QUIC比基于TCP在弱网、网络抖动导致频繁重连场景延迟更低。 二、测试方案 网络类型&#xff1a;实车5G、实车…

【Apache Doris】周FAQ集锦:第 14 期

【Apache Doris】周FAQ集锦&#xff1a;第 14 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目&#xff01; 在这个栏目中&#xff0c;每周将筛选社区反馈的热门问题和话题&#xff0c;重点回答并进行深入探讨。旨在为广大用户…

【VUE】v-if和v-for的优先级

v-if和v-for v-if 用来显示和隐藏元素 flag为true时&#xff0c;dom元素会被删除达到隐藏效果 <div class"boxIf" v-if"flag"></div>v-for用来进行遍历&#xff0c;可以遍历数字对象数组&#xff0c;会将整个元素遍历指定次数 <!-- 遍…

Django 执行原生SQL

在Django中&#xff0c;你可以使用Raw SQL queries来执行原生的SQL查询。这对于需要进行复杂查询或Django的ORM无法满足的查询非常有用。 1&#xff0c;添加模型 Test/app11/models.py from django.db import modelsclass Post(models.Model):title models.CharField(max_le…