冒泡,选择,插入,希尔排序

目录

一. 冒泡排序

1. 算法思想

2. 时间复杂度与空间复杂度

3. 代码实现

二. 选择排序

1. 算法思想

2. 时间复杂度与空间复杂度

3. 代码实现

三.插入排序

1. 直接插入排序

(1). 算法思想

(2). 时间复杂度与空间复杂度

(3). 代码实现

2. 希尔排序

(1). 算法思想

(2). 代码实现

(3). 时间复杂度与空间复杂度

一. 冒泡排序

1. 算法思想

假设排升序,从头开始两两比较选出最大的的值移到最后面(假设下标为10),再从头开始两两比较选出次大的移到下标为9的地方以此类推

2. 时间复杂度与空间复杂度

(1). 最优情况

当数据全都有序时,最快。因为此时每个元素只需比较一次就可以完成整个排序过程此时时间复杂度为   O(N)

(2). 最坏情况

当数据逆序时最慢,此时每一次比较都需要交换。时间复杂度为  O(N²)

(3). 平均情况

综上所述,平均复杂度为  O(N²)

(4). 空间复杂度

冒泡排序只需要一个额外变量来交换元素,不需要额外的数据结构来存储数据,所以空间复杂度为     O(1)

3. 代码实现
void BubbleSort(int* a, int n)//冒泡排序
{int count = 0;for(int j=0;j<n-1;j++){for (int i = 0; i < n - j-1; i++){if (a[i] <a[i+1] ){Swap(&a[i], &a[i + 1]);count = 1;}}if (count == 0)break;}
}

二. 选择排序

1. 算法思想

假设排升序,遍历数组,选出最大值与排序数列的最后一个元素(假设下标为10)交换,再从除最后一个元素(即下标0~9)的序列中找出次大值与下标为9的序列交换以此往复知道排序完毕

2. 时间复杂度与空间复杂度

(1). 时间复杂度

选择排序需要遍历n-1次来找到最小(或最大)元素,并且在每次遍历中都需要对剩余未排序元素进行遍历以找到最小(或最大)元素,因此选择排序的时间复杂度总是   O(N²)

(2) 空间复杂度

只需一个额外变量来存储找到的最大(或最小)元素的索引,所以空间复杂度为   O(1)

3. 代码实现

我们实现一个优化版本,同时找到最大的值与最小的值,分别与头和尾交换

void SelectSort(int* a, int n)
{int begin = 0, end = n -1;while(begin<end){int max = begin, min = begin;for (int i = begin+1; i <= end; i++){if (a[i] > a[max])max = i;if (a[i] < a[min])min = i;}Swap(&a[begin], &a[max]);Swap(&a[end], &a[min]);begin++;end--;}
}

以上代码还有一个小问题,当出现下图情况时

begin所指向的值与max所指向的值交换,那min指向的值就变为了原来max所指向的值,此时再与end交换会发生将最大的值交换过去的情况

修改代码为

void SelectSort(int* a, int n)
{int begin = 0, end = n -1;while(begin<end){int max = begin, min = begin;for (int i = begin+1; i <= end; i++){if (a[i] > a[max])max = i;if (a[i] < a[min])min = i;}if (begin == min){Swap(&a[begin], &a[max]);Swap(&a[max], &a[end]);}else{Swap(&a[begin], &a[max]);Swap(&a[end], &a[min]);}begin++;end--;}
}

三.插入排序

1. 直接插入排序
(1). 算法思想

从第一个元素开始排序,先排前一个数,再排前两个数以此类推

假设排升序,第一个数自然是有序的,第二个数与第一个数比较,如果比第一个数小就与其交换,然后看第三个数,此时前两个数是有序的,第三个数先于第二个数比较,比第二个数小就与其交换,再与第一个数比较,比第一个数小就与其交换,如果不比第二个数小就看第四个数,此时前三个数都是有序的以此类推

(2). 时间复杂度与空间复杂度

① 最好情况

在有序情况下只需遍历一遍即可时间复杂度为   O(N)

②最坏情况

在逆序情况下,每一次比较都要交换,时间复杂度为 O(N²)

③平均情况

综上所述平均时间复杂度为O(N²)

④空间复杂度

只需要一个额外的空间来存储当前要插入的元素,空间复杂度为O(1)

(3). 代码实现
void InsertSort(int* a,int n)//直接插入排序
{for(int i=0;i<n-1;i++){int end = i;int t = a[i+1];while (end >= 0){if (t < a[end]){a[end+1] = a[end];end--;}else   break;}a[end+1] = t;}}
2. 希尔排序
(1). 算法思想

是直接插入算法的改进版本,总体操作可大致分为两步

先进行预排序

直接插入排序

 直接插入排序是和距离为1的元素比较,而希尔排序是和距离为gap的元素比较,gap不断变小,直到变为1,此时即是直接插入排序

初始序列为 9 1 2 5 7 4 8 6 3 5 ,gap值为5进行一次预排序过程如下

预排序后序列为

当gap为2时

预排序后序列为

 我们发现预排序后一定比之前更加接近有序

从时间上讲,gap越大,大的数可以越快的到后面去,小的数可以越快的到前面去

gap越小呢,预排序完就越接近有序,gap==1就是直接插入排序

我们就可以将gap慢慢减少直到变为1从而进行直接插入排序是尽量是最好的情况

(2). 代码实现

希尔排序的代码与直接插入排序的代码十分相似,不同的地方就是gap,可以通过三层循环或四层循环实现,两者执行的次数实际是一样的

void ShellSort(int* a, int n)//希尔排序
{int gap = n;while(gap>1){gap =gap/ 3+1;// 除3不一定会=1,但3是最合理的,所以+1保证最后一次gap一定是1 //for(int j=0;j<gap;j++)//{for (int i = 0; i < n - gap; i++)//一组一组的排序所以i也可以+=gap,效率没有区别,都是要走这些步数{int end = i;int t = a[end + gap];while (end >= 0){if (t < a[end]){a[end + gap] = a[end];end -= gap;}elsebreak;}a[end + gap] = t;}//}}
}
(3). 时间复杂度与空间复杂度

希尔时间复杂度的计算,需要很高的数学水平,此处只做粗略解释(我不会,嘿嘿)

①时间复杂度

我们假设每一次gap=n/3,此时每组三个数据,

最坏情况下 第一次排序消耗:(1+2)*n/3==n

下一次 

gap=n/3/3=n/9,每组9个数据

但此时由于上面的预排序,不可能是最坏情况,即

(1+2+3+4+5+6+7+8)*n\9

具体计算我也不会

但是最后一次,gap==1时(此时很接近有序)

直接插入排序消耗n

时间复杂度大致为  O(N^1.3)即N的1.3次方

②空间复杂度

由于不需要额外的空间,所以空间复杂度为O(1)


这篇文章就到这里啦

(๑′ᴗ‵๑)I Lᵒᵛᵉᵧₒᵤ❤

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/380752.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

昇思25天学习打卡营第23天 | 基于MindSpore的红酒分类实验

学习心得&#xff1a;基于MindSpore的红酒分类实验 在机器学习的学习路径中&#xff0c;理解和实践经典算法是非常重要的一步。最近我进行了一个有趣的实验&#xff0c;使用MindSpore框架实现了K近邻&#xff08;KNN&#xff09;算法进行红酒分类。这个实验不仅加深了我对KNN算…

云手机结合自主ADB命令接口 提升海外营销效率

现在&#xff0c;跨境电商直播已经成为在线零售的重要渠道&#xff0c;在大环境下&#xff0c;确保直播应用的稳定性和用户体验至关重要。 云手机支持自主ADB命令接口&#xff0c;为电商直播营销提供了技术支持&#xff0c;使得应用开发、测试、优化和运维更加高效。 什么是A…

卷积神经网络学习问题总结

问题一&#xff1a; 深度学习中的损失函数和应用场景 回归任务&#xff1a; 均方误差函数&#xff08;MSE&#xff09;适用于回归任务&#xff0c;如预测房价、预测股票价格等。 import torch.nn as nn loss_fn nn.MSELoss() 分类任务&#xff1a; 交叉熵损失函数&…

用go实现限流算法

文章目录 固定窗口优缺点&#xff1a;适用场景&#xff1a;总结&#xff1a; 滑动窗口优缺点&#xff1a;适用场景&#xff1a;总结&#xff1a; 漏桶限流器优缺点&#xff1a;适用场景&#xff1a;总结&#xff1a; 令牌桶优缺点&#xff1a;适用场景&#xff1a;总结&#xf…

SpringBoot结合ip2region实现博客评论显示IP属地

你好呀&#xff0c;我是小邹。 在现代的Web应用中&#xff0c;特别是博客和论坛类网站&#xff0c;为用户提供地理定位服务&#xff08;如显示用户所在地理位置&#xff09;可以极大地增强用户体验。本文将详细探讨如何使用Java和相关技术栈来实现在博客评论中显示用户的地址信…

NXP i.MX8系列平台开发讲解 - 3.19 Linux TTY子系统(二)

专栏文章目录传送门&#xff1a;返回专栏目录 Hi, 我是你们的老朋友&#xff0c;主要专注于嵌入式软件开发&#xff0c;有兴趣不要忘记点击关注【码思途远】 目录 1. Linux 串口驱动 1.1 Uart 驱动注册流程 1.2 uart 操作函数 1.3 line discipline 2. Linux tty应用层使用…

【 DHT11 温湿度传感器】使用STC89C51读取发送到串口、通过时序图编写C语言

文章目录 DHT11 温湿度传感器概述接线数据传送通讯过程时序图检测模块是否存在 代码实现总结对tmp tmp << 1;的理解对sendByte(datas[0]/10 0x30);的理解 DHT11 温湿度传感器 使用80C51单片机通过读取HDT11温湿度传感的数据&#xff0c;发送到串口。 通过时序图编写相应…

2024-07-18 Unity插件 Odin Inspector8 —— Type Specific Attributes

文章目录 1 说明2 特定类型特性2.1 AssetList2.2 AssetSelector2.3 ChildGameObjectsOnly2.4 ColorPalette2.5 DisplayAsString2.6 EnumPaging2.7 EnumToggleButtons2.8 FilePath2.9 FolderPath2.10 HideInInlineEditors2.11 HideInTables2.12 HideMonoScript2.13 HideReferenc…

STM32学习(3)--GPIO输入

GPIO输入 3.1GPIO输入1.按键介绍2.传感器模块介绍3.硬件电路4.C语言知识点补充&#xff08;1&#xff09;C语言数据类型&#xff08;2&#xff09;C语言宏定义&#xff08;3&#xff09;C语言typedef(4)C语言结构体&#xff08;5&#xff09;C语言枚举 3.2按键控制LED代码1.mai…

Python爬虫(基本流程)

1. 确定目标和范围 明确需求&#xff1a;确定你需要从哪些网站抓取哪些数据。合法性&#xff1a;检查目标网站的robots.txt文件&#xff0c;了解哪些内容可以被抓取。数据范围&#xff1a;确定爬取数据的起始和结束点&#xff0c;比如时间范围、页面数量等。 2. 选择合适的工…

深入理解Linux网络(二):UDP接收内核探究

深入理解Linux网络&#xff08;二&#xff09;&#xff1a;UDP接收内核探究 一、UDP 协议处理二、recvfrom 系统调⽤实现 一、UDP 协议处理 udp 协议的处理函数是 udp_rcv。 //file: net/ipv4/udp.c int udp_rcv(struct sk_buff *skb) {return __udp4_lib_rcv(skb, &udp_…

pyspark使用 graphframes创建和查询图的方法

1、安装graphframes的步骤 1.1 查看 spark 和 scala版本 在终端输入&#xff1a; spark-shell --version 查看spark 和scala版本 1.2 在maven库中下载对应版本的graphframes https://mvnrepository.com/artifact/graphframes/graphframes 我这里需要的是spark 2.4 scala 2.…

(南京观海微电子)——电感的电路原理及应用区别

电感 电感是导线内通过交流电流时&#xff0c;在导线的内部及其周围产生交变磁通&#xff0c;导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时&#xff0c;其周围只呈现固定的磁力线&#xff0c;不随时间而变化&#xff1b;可是当在线圈中通过交流电流时&am…

linux内核中list的基本用法

内核链表 1 list_head 结构 为了使用链表机制&#xff0c;驱动程序需要包含<linux/types.h>头文件&#xff0c;该文件定义了如下结构体实现双向链&#xff1a; struct list_head {struct list_head *next, *prev; };2 链表的初始化 2.1 链表宏定义和初始化 可使用以…

智慧职校就业管理:开启校园招聘会新模式

在智慧职校的就业管理系统中&#xff0c;校园招聘会的出现&#xff0c;为学生们提供了一个展示自我、探寻职业道路的舞台&#xff0c;同时也为企业搭建了一座直面未来之星的桥梁。这一功能&#xff0c;凭借其独特的优势与前沿的技术&#xff0c;正在重新定义校园与职场之间的过…

react Jsx基础概念和本质

什么是jsx jsx是JavaScript和XML(HTML)的缩写&#xff0c;表示在js代码中编写HTML模板结构&#xff0c;它是react中编写UI模板的方式 const message this is message function App(){return (<div><h1>this is title</h1>{message}</div>) } jsx优…

【SpringBoot】 jasypt配置文件密码加解密

目前我们对yml配置文件中的密码都是明文显示&#xff0c;显然这不安全&#xff0c;有的程序员离职了以后可能会做一些非法骚操作&#xff0c;所以我们最好要做一个加密&#xff0c;只能让领导架构师或者技术经理知道这个密码。所以这节课就需要来实现一下。 我们可以使用jasypt…

持续集成08--Jenkins邮箱发送构建信息及测试报告

前言 在持续集成&#xff08;CI&#xff09;和持续部署&#xff08;CD&#xff09;的自动化流程中&#xff0c;及时通知团队成员关于构建的成功或失败是至关重要的。Jenkins&#xff0c;作为强大的CI/CD工具&#xff0c;提供了多种通知机制&#xff0c;其中邮件通知是最常用且有…

Java小技能:多级组织机构排序并返回树结构(包含每个层级的子节点和业务数据集合)

文章目录 引言I 实体定义1.1 部门1.2 用户组织机构中间表1.3 树状DTOII 抽取组织机构排序方法2.1 树状排序方法2.2 案例III 查询条件构建3.1 根据部门进行权限控制3.2 注入风险引言 需求: 根据组织机构进行数据授权控制,例如控制船舶、船舶设备、摄像头、港区查看权限。 一…

浅谈Canal原理

canal [kə’nl]&#xff0c;译意为水道/管道/沟渠&#xff0c;主要用途是基于 MySQL 数据库增量日志解析&#xff0c;提供增量数据 订阅 和 消费。应该是阿里云DTS&#xff08;Data Transfer Service&#xff09;的开源版本。 Canal与DTS提供的功能基本相似&#xff1a; 基于…