ubuntu2204配置anacondacuda4090nvidia驱动

背景

某个机房的几台机器前段时间通过dnat暴露至公网后被入侵挖矿,为避免一些安全隐患将这几台机器执行重装系统操作;

这里主要记录配置nvidia驱动及cuda&anaconda。

步骤

大概分为几个步骤

  1. 禁用nouveau
  2. 配置grub显示菜单
  3. install nvidia-driver
  4. install cuda
  5. install anaconda
  6. 测试

执行

system info

root@xxx:~# cat /etc/os-release 
PRETTY_NAME="Ubuntu 22.04.3 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.3 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy
ID=ubuntu
ID_LIKE=debian
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
UBUNTU_CODENAME=jammy
root@xxx:~# uname -a 
Linux exai-121 6.5.0-41-generic #41~22.04.2-Ubuntu SMP PREEMPT_DYNAMIC Mon Jun  3 11:32:55 UTC 2 x86_64 x86_64 x86_64 GNU/Linux

禁用nouveau

echo -e "blacklist nouveau\noptions nouveau modeset=0" > /etc/modprobe.d/blacklist-nouveau.conf
update-initramfs -u

配置grub显示菜单

    sed -i 's/^GRUB_TIMEOUT=.*$/GRUB_TIMEOUT=10/' /etc/default/grubsed -i 's/^GRUB_TIMEOUT_STYLE=hidden/#&/' /etc/default/grub# 验证grep -E "GRUB_TIMEOUT" /etc/default/grub# 更新grubupdate-grub

install nvidia-driver

两种安装驱动的方法

  1. 添加ppa源的方式用apt安装
  2. 官网下载指定版本的离线安全包安装

方法一

使用ubuntu带的硬件扫描配合ppa源安装

# 扫描硬件
ubuntu-drivers devices== /sys/devices/pci0000:00/0000:00:01.1/0000:01:00.0 ==
modalias : pci:v000010DEd00002684sv000010DEsd0000167Cbc03sc00i00
vendor   : NVIDIA Corporation
manual_install: True
driver   : nvidia-driver-535-server-open - distro non-free
driver   : nvidia-driver-535 - distro non-free recommended
driver   : nvidia-driver-545-open - distro non-free
driver   : nvidia-driver-535-server - distro non-free
driver   : nvidia-driver-545 - distro non-free
driver   : nvidia-driver-535-open - distro non-free
driver   : nvidia-driver-530 - third-party non-free
driver   : xserver-xorg-video-nouveau - distro free builtin
# apt安装需要的驱动版本即可 例如
apt install nvidia-driver-535 -y

方法二

编译器下载

apt update && apt install gcc make -y

官网下载535.183.01版本对应的离线安装run包
这里直接使用curl+proxy下载了

chmod +x NVIDIA-Linux-x86_64-535.183.01.run ./NVIDIA-Linux-x86_64-535.183.01.run

过程中遇到的选项根据提示选择即可

root@xxx:~# nvidia-smi 
Thu Jul 14 09:xx:01 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.183.01             Driver Version: 535.183.01   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 4090        Off | 00000000:01:00.0 Off |                  Off |
| 32%   62C    P2             224W / 450W |  19736MiB / 24564MiB |     96%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off | 00000000:81:00.0 Off |                  Off |
| 31%   49C    P2             144W / 450W |  11430MiB / 24564MiB |     38%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   2  NVIDIA GeForce RTX 4090        Off | 00000000:C1:00.0 Off |                  Off |
| 37%   63C    P2             140W / 450W |  11430MiB / 24564MiB |     39%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   3  NVIDIA GeForce RTX 4090        Off | 00000000:C2:00.0 Off |                  Off |
| 32%   58C    P2             136W / 450W |  11430MiB / 24564MiB |     40%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+

其他常用命令
更详细的卸载请参考https://blog.csdn.net/qq_43652666/article/details/134705794

# 卸载nvidia驱动
nvidia-uninstall

如果系统没有nvidia-uninstall可以使用dpkg包管理器列出系统中的nvidia关键字的包进行卸载

dpkg -l |grep nvidia*
apt remove --purge '^nvidia-.*'

install cuda

https://developer.nvidia.com/cuda-toolkit-archive这里选择要下载的版本
下载对应的离线run包
在这里插入图片描述
执行安装的时候要取消自带安装的530版本驱动,因为本地已经有驱动了。
注意这里cuda后缀标识代表会安装530.30.02版本的驱动,而我们本地已经安装了535的驱动,cuda版本是向下兼容的。

root@xxx:~# chmod +x cuda_12.1.1_530.30.02_linux.run 
# 安装完成
root@exai-121:~# sh cuda_12.1.1_530.30.02_linux.run
===========
= Summary =
===========Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-12.1/Please make sure that-   PATH includes /usr/local/cuda-12.1/bin-   LD_LIBRARY_PATH includes /usr/local/cuda-12.1/lib64, or, add /usr/local/cuda-12.1/lib64 to /etc/ld.so.conf and run ldconfig as rootTo uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-12.1/bin
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 530.00 is required for CUDA 12.1 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:sudo <CudaInstaller>.run --silent --driverLogfile is /var/log/cuda-installer.log# 验证
root@xxx:~# /usr/local/cuda-12.1/bin/nvcc --version 
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Mon_Apr__3_17:16:06_PDT_2023
Cuda compilation tools, release 12.1, V12.1.105
Build cuda_12.1.r12.1/compiler.32688072_0

ubuntu2204上不推荐使用530版本的驱动,安装会有一些依赖和GCC问题,尝试解决无果。推荐使用高版本驱动来向下兼容cuda版本。

问题:
make: *** [Makefile:82: modules] Error 2
-> Checking to see whether the nvidia kernel module was successfully built
executing: ‘cd ./kernel; /usr/bin/make -k -j32 NV_EXCLUDE_KERNEL_MODULES=“” SYSSRC=“/lib/modules/6.5.0-41-generic/build” SYSOUT=“/lib/modules/6.5.0-41-generic/build” NV_KERNEL_MODULES=“nvidia”’…
make[1]: Entering directory ‘/usr/src/linux-headers-6.5.0-41-generic’
warning: the compiler differs from the one used to build the kernel
The kernel was built by: x86_64-linux-gnu-gcc-12 (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0
You are using: cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0

Warning: Compiler version check failed:

The major and minor number of the compiler used to
compile the kernel:

x86_64-linux-gnu-gcc-12 (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0, GNU ld (GNU Binutils for Ubuntu) 2.38

does not match the compiler used here:

cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright © 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

It is recommended to set the CC environment variable
to the compiler that was used to compile the kernel.

To skip the test and silence this warning message, set
the IGNORE_CC_MISMATCH environment variable to “1”.
However, mixing compiler versions between the kernel
and kernel modules can result in subtle bugs that are
difficult to diagnose.
Failed CC version check.

The kernel was built by: x86_64-linux-gnu-gcc-12 (Ubuntu 12.3.0-1ubuntu1~22.04) 12.3.0 You are using: cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
make[3]: *** [scripts/Makefile.build:251: /tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel/nvidia/i2c_nvswitch.o] Error 1
make[3]: Target ‘/tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel/’ not remade because of errors.
make[2]: *** [/usr/src/linux-headers-6.5.0-41-generic/Makefile:2039: /tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel] Error 2
make[2]: Target ‘modules’ not remade because of errors.
make[1]: *** [Makefile:234: __sub-make] Error 2
make[1]: Target ‘modules’ not remade because of errors.
make[1]: Leaving directory ‘/usr/src/linux-headers-6.5.0-41-generic’
make: *** [Makefile:82: modules] Error 2
ERROR: The nvidia kernel module was not created.
ERROR: Installation has failed. Please see the file ‘/var/log/nvidia-installer.log’ for details. You may find suggestions on fixing installation problems in the README available on the Linux driver download page at www.nvidia.com.
/tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel/common/inc/nv-mm.h:88:60: warning: passing argument 4 of ‘get_user_pages’ makes pointer from integer without a cast [-Wint-conversion]
/tmp/selfgz2901/NVIDIA-Linux-x86_64-530.30.02/kernel/nvidia/nv-mmap.c:673:23: error: assignment of read-only member ‘vm_flags’

尝试通过更换gcc版本解决:

update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-11 11
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 12
update-alternatives --config gcc
# 弹出来的选项中选择12版本

这是离线安装驱动方案下的问题,使用apt安装530版本未测试过,不确定包管理器是否会自动解决编译依赖问题

后续

使用sudo定制权限管理
https://blog.51cto.com/154773488/2449180
https://blog.csdn.net/Field_Yang/article/details/51547804

参考

https://www.cnblogs.com/tarsss/p/17433419.html
https://blog.csdn.net/jiexijihe945/article/details/131517630
cuda下载地址
https://developer.nvidia.com/cuda-toolkit-archive

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/381181.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt Style Sheets-使用样式表自定义 Qt 部件

使用样式表自定义 Qt 部件 在使用样式表时&#xff0c;每个小部件都被视为具有四个同心矩形的框&#xff1a;边距矩形、边框矩形、填充矩形和内容矩形。框模型对此进行了更详细的描述。 盒模型 以下是四个同心矩形在概念上的呈现方式&#xff1a; 边距超出边框。边框绘制在边…

1.Fabric框架

要了解Fabric&#xff0c;首先要知道Hyperledger开源项目。 2015年12月&#xff0c;由开源世界的旗舰组织Linux基金会牵头&#xff0c;30家初始企业成员共同宣布Hyperledger联合项目成立。Hyperledger 超级账本&#xff0c;是首个面向企业应用场景的分布式账本平台&#xff0c…

【Spark官方文档部分翻译】RDD编程指南(RDD Programming Guide)

写在前面 内容如何选择 本翻译只翻译本人认为精华的部分&#xff0c;本人认为的Spark的一些核心理念&#xff0c;编程思想。一些特别基础的操作包括但不限于搭建环境就不在此赘述了。 配套版本 本系列基于Spark 3.3.1&#xff0c;Scala 2.12.10&#xff0c;进行翻译总结 原…

nginx通过nginx_upstream_check_module实现后端健康检查

1、简介说明 nginx是常用的反向代理和负载均衡服务&#xff0c;具有强大并发能力、稳定性、丰富的功能集、低资源的消耗。 nginx自身是没有针对后端节点健康检查的&#xff0c;但是可以通过默认自带的ngx_http_proxy_module 模块和ngx_http_upstream_module模块中的相关指令来完…

Redis之List列表

目录 一.列表讲解 二.列表命令 三.内部编码 四.应用场景 Redis的学习专栏&#xff1a;http://t.csdnimg.cn/a8cvV 一.列表讲解 列表类型是用来存储多个有序的字符串&#xff0c;如下所示&#xff0c;a、b、c、d、e五个元素从左到右组成了一个有序的列表&#xff0c;列表中的…

单例模式_Golang

目录 一、单例模式 1.1 基本概念 1.2 使用场景 二、Golang实现 2.1 懒汉模式&#xff08;Lazy Loading&#xff09; 一、单例模式 1.1 基本概念 一个类只能生成一个实例&#xff0c;且该类能自行创建这个实例的一种模式,这个定义个人感觉可以拆的通俗一些,在项目的生命周…

uniapp小程序上传pdf文件

<template><view class"mainInnBox"><view class"formBox"><!-- 注意&#xff0c;如果需要兼容微信小程序&#xff0c;最好通过setRules方法设置rules规则 --><u-form :model"form" ref"uForm" :rules&quo…

C语言:数组-学习笔记(万字笔记)——翻新版

目录 前言&#xff1a; 1、 数组的概念 1.1 什么是数组 1.2 为什么学习数组&#xff1f; 2. ⼀维数组的创建和初始化 2.1 数组创建 2.2 数组的初始化 2.3 数组的类型 2.3.1 什么是数组类型&#xff1f; 2.3.2 数组类型的作用 3、 一维数组的使用 3.1 数组下标 3.2 数…

ExoPlayer架构详解与源码分析(15)——Renderer

系列文章目录 ExoPlayer架构详解与源码分析&#xff08;1&#xff09;——前言 ExoPlayer架构详解与源码分析&#xff08;2&#xff09;——Player ExoPlayer架构详解与源码分析&#xff08;3&#xff09;——Timeline ExoPlayer架构详解与源码分析&#xff08;4&#xff09;—…

CentOS 7 初始化环境配置详细

推荐使用xshell远程连接&#xff0c;如链接不上 请查看 CentOS 7 网络配置 修改主机名 hostname hostnamectl set-hostname xxx bash 关闭 SElinux 重启之后生效 配置yum源&#xff08;阿里&#xff09; 先备份CentOS-Base.repo&#xff0c;然后再下载 mv /etc/yum.repos…

《昇思25天学习打卡营第24天|基于 MindSpore 实现 BERT 对话情绪识别》

1. BERT 模型概述 BERT&#xff08;Bidirectional Encoder Representations from Transformers&#xff09;是一个预训练的语言表示模型&#xff0c;可以应用于多种自然语言处理任务&#xff0c;包括对话情绪识别。BERT 通过双向 Transformer 编码器&#xff0c;能同时考虑句子…

什么是单例模式,有哪些应用?

目录 一、定义 二、应用场景 三、6种实现方式 1、懒汉式&#xff0c;线程不安全。 2、懒汉式&#xff0c;线程安全 3、双检锁/双重校验锁&#xff08;DCL&#xff0c;即 double-checked locking&#xff09; 4、静态内部类方式-------只适用于静态域 5、饿汉式 6、枚举…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 图像物体的边界(200分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试D卷目录,全、新、准,题目覆盖率达 95% 以上,支持题目在线…

NFT革命:数字资产的确权、营销与元宇宙的未来

目录 1、NFT&#xff1a;数字社会的数据确权制度 2、基于低成本及永久产权的文化发现 3、PFP&#xff1a;从“小图片”到“身份表达”&#xff0c;再到社区筛选 4、透明表达&#xff1a;NFT 在数字化营销中的商业价值 5、可编程性&#xff1a;赋予 NFT 无限可能的应用 5.…

系统架构设计师教程(清华第二版) 第3章 信息系统基础知识-3.2 业务处理系统-解读

教材中,一会儿“业务处理系统”,一会儿“事务处理系统”,语法毛病一堆。真是清华的水平!!! 系统架构设计师教程 第3章 信息系统基础知识-3.2 业务处理系统 3.2.1 业务处理系统的概念3.2.2 业务处理系统的功能3.2.2.1 数据输入3.2.2.2 数据处理3.2.2.2.1 批处理 (Batch …

驱动框架——CMSIS第一部分 RTE驱动框架介绍

一、介绍CMISIS 什么是CMSIS&#xff08;cortex microcontrol software interface standard一种软件标准接口&#xff09;&#xff0c;官网地址&#xff1a;https://arm-software.github.io/CMSIS_6/latest/General/index.html 包含的core、driver、RTOS、dsp、nn等部分&…

Synchronized升级到重量级锁会发生什么?

我们从网上看到很多&#xff0c;升级到重量锁的时候不会降级&#xff0c;再来线程都是重量级锁 今天我们来实验一把真的是这样的吗 1.首选导入Java对象内存布局的工具库&#xff1a; <dependency><groupId>org.openjdk.jol</groupId><artifactId>jol-…

redis的学习(一):下载安装启动连接

简介 redis的下载&#xff0c;安装&#xff0c;启动&#xff0c;连接使用 nosql nosql&#xff0c;即非关系型数据库&#xff0c;和传统的关系型数据库的对比&#xff1a; sqlnosql数据结构结构化非结构化数据关联关联的非关联的查询方式sql查询非sql查询事务特性acidbase存…

Python数据风险案例54——人工智能热门概念股爬虫分析其价值(三因子模型)

案例背景 人工智能概念如火如荼的夏天&#xff0c;在这个2024年&#xff0c;我觉得需要提早布局一下这个概念。所以我们找一下A股里面人们的人工智能概念股&#xff0c;然后分析他们的数据应用三因子模型&#xff0c;也就是最经典的资本资产定价模型的衍生版去研究他们各自的投…

ZYNQ 入门笔记(零):概述

文章目录 引言产品线Zynq™ 7000 SoCZynq UltraScale™ MPSoCZynq UltraScale RFSoCVersal™ Adaptive SoC 开发环境 引言 Xilinx FPGA 产品线从经济型的 Spartan、Artix 系列到高性能的 Kintex、Virtex、Versal 系列&#xff0c;可以说涵盖了 FPGA 的绝大部分应用场景&#x…