Linux:基础IO---文件描述符

文章目录

      • 1. 前言
        • 1.1 C语言文件知识回顾
      • 2. 文件
        • 2.1 文件基础知识
      • 3. 被打开的文件
        • 3.1 以C语言为主,先回忆一下C文件接口
        • 3.2 过渡到系统,认识文件系统调用
        • 3.3 访问文件的本质
        • 3.4 重定向&&缓冲区

  • 序:在深入了解了进程的内容后,我们对于进程的学习将会告一个段落,现在我将对Linux中的基础IO部分的内容进行一个梳理,本章节将围绕文件描述符来走进文件的部分,进而了解对于基础IO这个宏观的理解。

1. 前言

1.1 C语言文件知识回顾

文件分为程序文件和数据文件
文件名 == 文件路径+文件名主干+文件后缀

数据文件:

  • 文本文件
  • 二进制文件

流:

我们程序的数据需要输出到各种外部设备,也需要从外部设备获取数据,不同的外部设备的输⼊输出操作各不相同,为了方便程序员对各种设备进行方便的操作,我们抽象出了流的概念,我们可以把流想象成流淌着字符的河。

C程序针对文件、画面、键盘等的数据输⼊输出操作都是通过流操作的。

⼀般情况下,我们要想向流里写数据,或者从流中读取数据,都是要打开流,然后操作。

标准流:

那为什么我们从键盘输入数据,向屏幕上输出数据,并没有打开流呢?

那是因为C语言程序在启动的时候,默认打开了3个流:

stdin - 标准输⼊流,在⼤多数的环境中从键盘输⼊,scanf函数就是从标准输⼊流中读取数据。
stdout - 标准输出流,⼤多数的环境中输出⾄显⽰器界⾯,printf函数就是将信息输出到标准输出
流中。

stderr - 标准错误流,⼤多数环境中输出到显⽰器界⾯。

这是默认打开了这三个流,我们使用scanf、printf等函数就可以直接进行输入输出操作的。

stdin、stdout、stderr 三个流的类型是: FILE * ,通常称为文件指针。

C语言中,就是通过 FILE* 的文件指针来维护流的各种操作的。

C语言提供的一些有关文件操作的接口函数:

在这里插入图片描述

scanf:从标准输入流上读取格式化的数据
fscanf:从指定的输入流上读取格式化的数据
sscanf:在字符串中读取格式化的数据

printf:把数据以格式化的形式打印在标准输出流上
fprintf:把数据以格式化的形式打印在指定的输出流上
sprintf:把格式化的数据转化成字符串

2. 文件

2.1 文件基础知识

共识原理:

1. 文件 == 内容+属性

2. 文件分为打开的文件和没打开的文件

3. 打开的文件----->谁打开的?自然是进程。(本质是研究进程和文件的关系)

4. 没打开的文件----->在哪里放着呢?在磁盘上放着。我们最关心什么问题呢?没有被打开的文件非常多。文件如何被分门别类的放置好----->我们要快速的进行增删查改(快速找到文件)

问题一:文件是如何存储的呢?

1. 文件被打开必须先被加载到内存里
2. 进程:打开的文件=1:n
基于上面两点,操作系统内部一定存在大量的被打开的文件!

问题二:那么OS要不要管理这些被打开的文件呢?怎么管理呢???

一定是先描述,再组织!!!-----在内核中,一个被打开的文件都必须有自己的文件打开对象,该对象包含了文件的很多属性struct XXX(文件属性)

3. 被打开的文件

首先,确认我们的研究对象是被打开的文件

3.1 以C语言为主,先回忆一下C文件接口

问题一:当前路径是什么?

当前路径,就是当前进程的当前路径cwd(current work direction)

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>int main(){printf("pid:%d\n",getpid());int fd=open("loggggg.txt",O_WRONLY|O_CREAT|O_TRUNC,0666);if(fd<0){perror("open");return -1;}close(fd);sleep(1000);return 0;
}

当我们执行完后,发现我们在当前路径下,创建了loggggg.txt文件。
在这里插入图片描述
在这里插入图片描述

int main()
{printf("pid:%d\n",getpid());chdir("/home/zby/");int fd=open("loggggg.txt",O_WRONLY|O_CREAT|O_TRUNC,0666);if(fd<0){perror("open");return -1;}close(fd);sleep(1000);return 0;
}

问题二:如果我更改了当前进程的cwd,是不是就可以把文件新建到其他目录?

事实确实是如此的!!!

当我调用系统接口,改变当前进程的路径的时候,再去创建文件,发现创建文件的路径也随之改变
在这里插入图片描述
在这里插入图片描述

C程序启动的时候会默认打开三个标准输入输出文件
实际上,默认打开这三个标准输入输出流不是c语言的特性,是操作系统的特性,进程会默认打开键盘,显示器,显示器!!!

在这里插入图片描述

3.2 过渡到系统,认识文件系统调用

文件其实是在磁盘上,磁盘是外部设备,访问磁盘文件其实就是在访问硬件!

几乎所有的库,只要是访问硬件设备,必定要封装系统调用!(printf/fprintf/fscanf/fwrite/fread/fgets/gets/…----库函数系统调用接口)

open( )函数

在这里插入图片描述

#define ONE_FLAG 000000001<<0
#define TWO_FLAG 000000001<<1
#define THREE_FLAG 000000001<<2
#define FOUR_FLAG 000000001<<3void flag(int flag)
{if(flag&ONE_FLAG){printf("ONE_FLAG ");}if(flag&TWO_FLAG){printf("TWO_FLAG ");}if(flag&THREE_FLAG){printf("THREE_FLAG ");}if(flag&FOUR_FLAG){printf("FOUR_FLAG ");}printf("\n");
}int main()
{flag(ONE_FLAG);flag(ONE_FLAG|TWO_FLAG);flag(ONE_FLAG|TWO_FLAG|THREE_FLAG);flag(ONE_FLAG|TWO_FLAG|THREE_FLAG|FOUR_FLAG);return 0;
}

上面的代码演示结果如下:

在这里插入图片描述

这里强调一下位图的使用,open的第二个参数也是如此。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这里只展示了常用的几个宏。

3.3 访问文件的本质

文件描述符:

文件描述符0 1 2分别表述标准输入(stdin)、标准输出(stdout)、标准错误(stderr)。
在OS接口层面,只认fd ,即文件描述符。

FILE * fopen( )中的FILE是C语言提供的一个结构体,既然操作系统只认文件描述符,那么该结构体中一定封装了文件描述符fd。
例如: stdin -> _ fileno(stdin的fd)

close:将该文件描述符所对应的数组下标所指向的对象置空,并且引用计数减一。(一个文件是可以被多个用户使用的,如:stdout和stderr都是指向显示器文件。)

在这里插入图片描述

上面的代码是用户层,下面的组织形式是OS层。

当我们访问一个文件时,系统是通过该进程的task_struct结构体内的file_struct * file的结构体指针指向的文件描述符表,用该下标fd访问对应文件的PCB结构体,然后对磁盘将内容存放到文件缓冲区内,当我们要访问时,就将文件缓存区的文件内容拿出来用!!!

其中,read的本质是拷贝文件缓冲区的内容。

fd文件描述符的本质也是文件指针数组的下标

对文件内容,做任何操作,都必须把文件先加载(磁盘------>内存的拷贝)到内核对应的文件缓冲区内!!!

3.4 重定向&&缓冲区

文件描述符的的分配原则:从下标0开始,最小的,没有被使用的数组位置作为最新的fd文件描述符给用户

重定向:更改文件描述符的指针指向----->(数组下标不变)
dup2:进行重定向的系统调用
重定向:打开文件的方式+dup2

进程历史打开的文件与进行各种重定向关系都和未来进行程序替换无关!!!
程序替换不影响文件访问

问题一:问题一:stdout和stderr都是指向显示屏,有什么区别,为什么有了“1”,还要有“2”???

让我们看下面一段代码:

#include<stdio.h>
int main(){fprintf(stdout,"i am normal\n");fprintf(stdout,"i am normal\n");fprintf(stdout,"i am normal\n");fprintf(stdout,"i am normal\n");fprintf(stdout,"i am normal\n");fprintf(stderr,"i am error\n");fprintf(stderr,"i am error\n");fprintf(stderr,"i am error\n");fprintf(stderr,"i am error\n");fprintf(stderr,"i am error\n");return 0;
}

演示结果如下:
在这里插入图片描述

此时我们没看出什么,但当我们将这些内容都输入到一个文件中就会发生变化
在这里插入图片描述

这是为什么呢?让我们接着看!!!
当运行该段代码的时候在这里插入图片描述

发现两个分离了在这里插入图片描述

当我们直接将结果输入到log.txt文件当中时,默认是将文件描述符1所指向的文件内容传到log.txt中,所以打印到stderr文件中的内容不会打印到log.txt中去,而为什么stderr和stdout都指向显示器,是因为,当程序运行后的显示中可能会有错误信息,而当打印的信息很繁杂的时候,就需要将这些错误信息统一起来!!!所以,结论:是为了将错误信息单独拉出来。

问题二:如何理解“一切皆文件”?

在这里插入图片描述

当我们的使用系统调用接口read时,传一个文件描述符fd,操作系统就会通过该进程teak_struct内的files指针找到一个文件描述符表,找到对应的文件的PCB结构,调用里面的f_ops指针,指向operationfunc的结果体,然后调用里面的函数指针int(&readp)(),该函数指针指向对应的硬件设备,不同的硬件设备提供不同的read和write接口,但在operationfunc里面都是统一的接口,从而调用对应的read接口!!!
(用统一的文件接口来访问不同的硬件设备 == 一切皆文件)

其中的各种struct file就是虚拟文件系统(VFS),所以不同的硬件对应的读写方式肯定是不一样的,但是它们都有自己的 read 和 write 方法。也就是说,这里的硬件可以统一看作成一种特殊的文件。比如这里设计一种结构:struct file,它包括文件的属性、文件的操作或方法等,Linux 说一切皆文件,Linux 操作系统就必须要能够保证这点。在 C 语言中,怎么让一个结构体既有属性又有方法呢?函数指针。此时每一个硬件都对应这样一个结构,硬件一旦数量很多,操作系统就需要对它们进行管理 —— 先描述,再组织。所谓的描述就是 struct file;而组织就是要把每一个硬件对应的结构体关联起来,并用 file header 指向。所以在操作系统的角度,它所看到的就是一切皆文件,也就是说所有硬件的差异经过描述就变成了同一种东西,只不过当具体访问某种设备时,使用函数指针执行不同的方法达到了不同的行为。现在就能理解为什么可以把键盘、显示器这些设备当作文件,因为本质不同,设备的读写方法是有差异的,但我们可以通过函数指针让不同的硬件包括普通文件在操作系统看来是同样的方法、同样的文件。所以,一切皆文件。

总结:

本篇文章从C语言入手,从C语言的文件接口出发,逐渐过渡到系统对于文件的调用,本文的研究对象是已经被打开的文件,我们用先描述,再组织6个字,创建文件结构体对文件进行管理,然后通过几个细致的例子和对问题的讲解,说出我对重定向和缓冲区的理解!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/38120.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LINUX基础 [二] - 进程概念

目录 前言 什么是进程 如何管理进程 描述进程 组织进程 如何查看进程 通过 ps 命令查看进程 通过 ls / proc 命令查看进程 通过系统调用 获取进程标示符 前言 在学习了【Linux系统编程】中的 ​ 操作系统 和 冯诺依曼体系结构 之后&#xff0c;我们已经对系统应该有…

word使用自带的公式

文章目录 Word公式中word公式快捷键&#xff1a;word2016公式框输入多行word 公式加入空格&#xff1a;word公式如何输入矩阵:公式图片转为Latex语法word 能直接输入 latex 公式么 word文本中将文字转为上标的快捷键 Tips几个好用的网站&#xff1a; 适用于&#xff1a;我的wor…

LSM-Tree(Log-Structured Merge-Tree)详解

1. 什么是 LSM-Tree? LSM-Tree(Log-Structured Merge-Tree)是一种 针对写优化的存储结构,广泛用于 NoSQL 数据库(如 LevelDB、RocksDB、HBase、Cassandra)等系统。 它的核心思想是: 写入时只追加写(Append-Only),将数据先写入内存缓冲区(MemTable)。内存数据满后…

车载以太网网络测试-21【传输层-DOIP协议-4】

目录 1 摘要2 DoIP entity status request/response&#xff08;0x4001、0x4002&#xff09;2.1 使用场景2.2 报文结构2.2.1 0x4001&#xff1a;DoIP entity status request2.2.2 0x4002&#xff1a;DoIP entity status response 3 Diagnostic power mode information request/…

CSS学习笔记

【1】CSS样式规则 【2】CSS样式表引入方式 1、行内式 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"/><meta name"vi…

医学交互作用分析步骤和目的(R语言)

医学交互作用分析的目的和用途&#xff08;R语言&#xff09; 医学交互作用分析一直是医学数据分析的组成部分&#xff0c;总结最近的一些认识。 目的&#xff1a; 在独立危险因素鉴定的研究中&#xff0c;&#xff08;独立危险因素的&#xff09;交互作用可以作为独立危险因…

『uniapp』简单文本复制文字 富文本内容复制文字(详细图文注释)

目录 text组件错误代码示例成功代码总结 欢迎关注 『uniapp』 专栏&#xff0c;持续更新中 欢迎关注 『uniapp』 专栏&#xff0c;持续更新中 text组件 官方文档可知app端用selectable可实现文本选中进而可复制,也就是说text标签内部的文本就可以复制了 https://uniapp.dclou…

C# SolidWorks 二次开发 -各种菜单命令增加方式

今天给大家讲一讲solidworks中各种菜单界面&#xff0c;如下图&#xff0c;大概有13处&#xff0c;也许还不完整哈。 1.CommandManager选项卡2.下拉选项卡3.菜单栏4.下级菜单5.浮动工具栏6.快捷方式工具栏7.FeatureManager工具栏区域8.MontionManager区域 ModelView?9.任务窗…

SAP Commerce(Hybris)PCM模块(一):商品批量导入导出

PCM&#xff08;Product Content Management&#xff09;是一个基于Backoffice&#xff0c;利于管理员直接页面操作的Hybris商品管理模块。 前置准备 在启动Hybris项目后&#xff0c;可以在backoffice控制台选择商品模块 但是&#xff0c;仅仅是以初始化状态启动是不够的&…

Apache Doris

Apache Doris介绍 Apache Doris 是一个基于 MPP 架构的高性能、实时的分析型数据库&#xff0c;以极速易用的特点被人们所熟知&#xff0c;仅需亚秒级响应时间即可返回海量数据下的查询结果&#xff0c;不仅可以支持高并发的点查询场景&#xff0c;也能支持高吞吐的复杂分析场…

go:前后端分离

1.前端代码 新建一个前端文件夹&#xff0c;在该文件夹下新建一个.html文件&#xff0c;写入自己的html代码。 前端搞定。 2.后端代码 其核心是挂载路由接受前端传来的数据核心代码如下&#xff1a; func main() { // 服务运行提示 fmt.Println("go web server is runn…

CUDA 学习(2)——CUDA 介绍

GeForce 256 是英伟达 1999 年开发的第一个 GPU&#xff0c;最初用作显示器上渲染高端图形&#xff0c;只用于像素计算。 在早期&#xff0c;OpenGL 和 DirectX 等图形 API 是与 GPU 唯一的交互方式。后来&#xff0c;人们意识到 GPU 除了用于渲染图形图像外&#xff0c;还可以…

C语言【文件操作】详解中

引言 介绍和文件操作中文件的顺序读写相关的函数 看这篇博文前&#xff0c;希望您先仔细看一下这篇博文&#xff0c;理解一下文件指针和流的概念&#xff1a;C语言【文件操作】详解上-CSDN博客文章浏览阅读606次&#xff0c;点赞26次&#xff0c;收藏4次。先整体认识一下文件是…

损失函数理解(二)——交叉熵损失

损失函数的目的是为了定量描述不同模型&#xff08;例如神经网络模型和人脑模型&#xff09;的差异。 交叉熵&#xff0c;顾名思义&#xff0c;与熵有关&#xff0c;先把模型换成熵这么一个数值&#xff0c;然后用这个数值比较不同模型之间的差异。 为什么要做这一步转换&…

学习笔记--基于Sa-Token 实现Java项目单点登录+同端互斥检测

目录 同端互斥登录 单点登录SSO 架构选型 模式二: URL重定向传播 前后端分离 整体流程 准备工作 搭建客户端 搭建认证中心SSO Server 环境配置 开放认证接口 启动类 跨域处理 同端互斥登录 同端互斥登陆 模块 同端互斥登录指&#xff1a;同一类型设备上只允许单地…

蓝桥杯 小球反弹

问题描述 有一个长方形&#xff0c;长为 343720 单位长度&#xff0c;宽为 233333 单位长度。 在其内部左上角顶点有一小球&#xff08;无视其体积&#xff09;&#xff0c;其初速度方向如图所示&#xff0c;且保持运动速率不变。分解到长宽两个方向上的速率之比为&#xff1…

PyCharm中使用pip安装PyTorch(从0开始仅需两步)

无需 anaconda&#xff0c;只使用 pip 也可以在 PyCharm 集成环境中配置深度学习 PyTorch。 本文全部信息及示范来自 PyTorch 官网。 以防你是super小白&#xff1a; PyCharm 中的命令是在 Python Console 中运行&#xff0c;界面左下角竖排图标第一个。 1. 安装前置包 numpy …

在刀刃上发力:如何精准把握计划关键节点

关键路径分析是项目管理中的一种重要方法&#xff0c;它通过在甘特图中识别出项目中最长、最关键的路径&#xff0c;来确定项目的最短完成时间。 关键路径上的任务都是项目成功的关键因素&#xff0c;任何延误都可能导致整个项目的延期。关键路径分析对于项目管理者来说至关重要…

Burp Suite 代理配置全流程指南

目录 一、基础环境准备 1.1 安装与启动 1.2 环境变量配置 二、核心代理配置 2.1 Burp 代理监听设置 2.2 浏览器代理配置 Firefox Chrome/Edge 代理插件推荐 三、HTTPS 流量拦截 3.1 证书安装流程 3.2 移动端配置 四、高级功能应用 4.1 流量操作 4.2 HTTP 历史记…

【数据分享】我国乡镇(街道)行政区划数据(免费获取/Shp格式)

行政区划边界矢量数据是我们在各项研究中最常用的数据。之前我们分享过2024年我国省市县行政区划矢量数据&#xff08;可查看之前的文章获悉详情&#xff09;&#xff0c;很多小伙伴拿到数据后咨询有没有精细到乡镇&#xff08;街道&#xff09;的行政区划矢量数据&#xff01;…