【06】LLaMA-Factory微调大模型——微调模型评估

上文【05】LLaMA-Factory微调大模型——初尝微调模型,对LLama-3与Qwen-2进行了指令微调,本文则介绍如何对微调后的模型进行评估分析。

一、部署微调后的LLama-3模型

激活虚拟环境,打开LLaMA-Factory的webui页面

conda activate GLM
cd LLaMA-Factory/
llamafactory-cli webui

选择 模型的名称,并选择微调参数保存的路径(test1),之后选择Chat对话中加载模型

模型加载成功后即可进行问答交互,输入一条测试数据,来观察微调后模型的回复

请根据基本案情,利用三段论的推理方式得到判决结果,判决结果包括:1.罪名;\n2.刑期。
基本案情:\n广东省鹤山市人民检察院指控被告人李某甲于2014年7月7日9时许,在鹤山市宅梧镇双和公路宅梧收费站附近路段被民警抓获。民警当场从李某甲身上搜获搜获白色晶体38小包。经鉴定,从李某甲处缴获的白色晶体净重12.9克,检出甲基苯丙胺成分。被告人李某甲到案后如实供述自己的罪行,可以从轻处罚。建议对被告人判处有期徒刑六个月至一年六个月,并处罚金。提请法院依法惩处。上述事实,被告人李某甲在开庭审理过程中亦无异议,并有抓获被告人及破案的经过材料、被告人的供述、证人李X锋的证言、扣押物品清单、鉴定意见、辨认笔录、现场勘某足以认定。

模型的回答如下:

加载一个原始模型,输入相同的问题,分析微调前后模型回答的变化 

可直观发现微调后的模型回答以三段论的形式展开,逻辑性更强,也具有参考意义 

二、评估微调后的LLama-3模型

上传评估用的数据集并对数据集进行注册。

【提示】在模型训练与评估过程中,对数据集划分训练集、验证集和测试集极为重要。通常情况下,可以按照60%-20%-20%的比例进行划分,即60%的数据作为训练集,20%的数据作为验证集,剩下的20%作为测试集。这种划分方法具有广泛的适用性,但也可以根据具体应用场景进行调整。

训练集是机器学习模型训练过程中使用的数据集。通过对训练集进行数据预处理、特征提取和模型训练,可以使得模型能够更好地拟合数据,并能够在未知数据上进行有效的预测。在训练过程中,需要对模型进行参数选择和调整,以使得模型在验证集上的表现达到最佳。
验证集主要用于调整模型的超参数,以及在训练过程中对模型进行验证和评估。超参数是在模型训练过程中需要手动设置的参数,例如学习率、迭代次数等。这些参数对模型的性能有着重要的影响,需要通过验证集来进行调整,以使得模型在验证集上的性能达到最佳。
测试集是在模型训练和参数调整完成后,用于评估模型性能的数据集。模型的最终性能如何,需要通过测试集来进行评估。在测试过程中,需要对数据进行预处理和特征提取,以使得模型能够更好地适应测试数据。同时,需要对模型的预测结果进行分析和评估,以确定模型的性能如何,以及是否需要进行进一步的优化。

具体可参考以下这篇博文

大模型训练:训练集、验证集与测试集的划分策略-百度开发者中心 (baidu.com)icon-default.png?t=N7T8https://developer.baidu.com/article/details/1900656数据集包含11236条,本文按照9:1的比例划分训练集和测试集。即训练集:10112条、测试集:1123条。模型使用训练集训练,在测试集上评估。将原始数据集切分的python代码如下:

使用Python的`json`模块来加载和保存JSON数据,以及使用`random`模块来随机划分数据。以下是一个简单的示例代码,它将读取`law_train.json`文件,然后将数据随机分为训练集和测试集,并将它们分别保存到`llm_law_train.json`和`llm_law_test.json`文件中。```python
import json
import random# 定义分割比例
train_ratio = 0.9# 读取原始JSON文件
with open('law_train.json', 'r', encoding='utf-8') as f:data = json.load(f)# 随机打乱数据顺序
random.shuffle(data)# 计算训练集和测试集的划分点
split_index = int(len(data) * train_ratio)# 分割数据为训练集和测试集
train_data = data[:split_index]
test_data = data[split_index:]# 将训练集保存到JSON文件
with open('llm_law_train.json', 'w', encoding='utf-8') as f:json.dump(train_data, f, ensure_ascii=False, indent=4)# 将测试集保存到JSON文件
with open('llm_law_test.json', 'w', encoding='utf-8') as f:json.dump(test_data, f, ensure_ascii=False, indent=4)print("数据已成功分割并保存到文件。")
```此脚本将创建两个新的文件:`llm_law_train.json`和`llm_law_test.json`,分别包含原始数据的90%和10%。此外,请注意,根据您的具体需求,您可能需要调整文件路径或编码方式。此代码假设您的JSON文件使用的是UTF-8编码。如果您的数据使用的是其他编码,请相应地更改`encoding`参数。

在data文件夹下新建tool.py

运行tool.py,完成数据集的切分

之后在dataset_info.json中进行数据集注册

选择检查点路径,即模型微调的参数,数据集选择新注册的测试数据集,配置相应的输出目录

预览命令如下

llamafactory-cli train \--stage sft \--model_name_or_path /home/dell/LLaMA-Factory/model/Llama3-8B-Chinese-Chat \--preprocessing_num_workers 16 \--finetuning_type lora \--quantization_method bitsandbytes \--template llama3 \--flash_attn auto \--dataset_dir data \--eval_dataset llm_law_test \--cutoff_len 1024 \--max_samples 100000 \--per_device_eval_batch_size 2 \--predict_with_generate True \--max_new_tokens 512 \--top_p 0.7 \--temperature 0.95 \--output_dir saves/LLaMA3-8B-Chinese-Chat/lora/eval_model_test1 \--do_predict True \--adapter_name_or_path saves/LLaMA3-8B-Chinese-Chat/lora/test1 

 开启测试评估后页面如图所示,预计时间2.5小时

命令行运行状态如下:

三、评估结果分析

运行结束后结果如图所示 

{"predict_bleu-4": 65.52780035587189,"predict_rouge-1": 77.68434395017793,"predict_rouge-2": 65.68475258007118,"predict_rouge-l": 69.22845044483986,"predict_runtime": 10781.344,"predict_samples_per_second": 0.104,"predict_steps_per_second": 0.052
}

 BLEU、ROUGE-L两个指标进行评价。BLEU通过计算模型生成句与原句的相似度,用于评估模型文本生成的精确率,ROUGE则计算评估文本中的内容被模型生成的文本所涵盖的比率,用于评估模型的召回率。

指标含义

BLEU-4  

 BLEU(Bilingual Evaluation Understudy)是一种常用的用于评估机器翻译质量的指标。BLEU-4 表示四元语法 BLEU 分数,它衡量模型生成文本与参考文本之间的 n-gram 匹配程度,其中 n=4。值越高表示生成的文本与参考文本越相似,最大值为 100。
predict_rouge-1 和 predict_rouge-2

ROUGE(Recall-Oriented Understudy for Gisting Evaluation)是一种用于评估自动摘要和文本生成模型性能的指标。ROUGE-1 表示一元 ROUGE 分数,ROUGE-2 表示二元 ROUGE 分数,分别衡量模型生成文本与参考文本之间的单个词和双词序列的匹配程度。值越高表示生成的文本与参考文本越相似,最大值为 100。

predict_rouge-lROUGE-L 衡量模型生成文本与参考文本之间最长公共子序列(Longest Common Subsequence)的匹配程度。值越高表示生成的文本与参考文本越相似,最大值为 100。
predict_runtime预测运行时间,表示模型生成一批样本所花费的总时间。单位通常为秒。
predict_samples_per_second每秒生成的样本数量,表示模型每秒钟能够生成的样本数量。通常用于评估模型的推理速度。
predict_steps_per_second每秒执行的步骤数量,表示模型每秒钟能够执行的步骤数量。对于生成模型,一般指的是每秒钟执行生成操作的次数。

 小结

本文介绍了如何对微调后的模型进行使用与简单评估。下文【07】LLaMA-Factory微调大模型——微调模型导出将对微调后的模型进行导出,欢迎您持续关注,如果本文对您有所帮助,感谢您一键三连,多多支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/381723.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# Program to print pyramid pattern (打印金字塔图案的程序)

编写程序打印由星星组成的金字塔图案 例子 : 输入:n 6输出: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 我们强烈建…

Python 机器学习求解 PDE 学习项目——PINN 求解一维 Poisson 方程

本文使用 TensorFlow 1.15 环境搭建深度神经网络(PINN)求解一维 Poisson 方程: − Δ u f in Ω , u 0 on Γ : ∂ Ω . \begin{align} -\Delta u & f \quad & \text{in } \Omega,\\ u & 0 \quad & \text{on } \Gamma:\partial \Om…

Flink笔记整理(三)

Flink笔记整理(三) 文章目录 Flink笔记整理(三)五、DataStream API5.1Environment5.2 Source5.3 Transformation5.4 Sink 总结 五、DataStream API DataStream API是Flink的核心层API,一个Flink程序,其实本…

NoSQL之Redis非关系型数据库

目录 一、数据库类型 1)关系型数据库 2)非关系型数据库 二、Redis远程字典服务器 1)redis介绍 2)redis的优点 3)Redis 为什么那么快? 4)Redis使用场景 三、Redis安装部署 1&#xff0…

批量打断相交线——ArcGISpro 解决方法

在数据处理,特别是地理空间数据处理或是任何涉及图形和线条分析的场景中,有时候需要把相交的线全部从交点打断一个常见的需求。这个过程对于后续的分析、编辑、或是可视化展现都至关重要,因为它可以确保每条线都是独立的,避免了因…

c++ primer plus 第16章string 类和标准模板库, 16.3.3 对矢量可执行的其他操作

c primer plus 第16章string 类和标准模板库, 16.3.3 对矢量可执行的其他操作 c primer plus 第16章string 类和标准模板库, 16.3.3 对矢量可执行的其他操作 文章目录 c primer plus 第16章string 类和标准模板库, 16.3.3 对矢量可执行的其他操作16.3.3 对矢量可执行的其他操作…

DB-GPT:LLM应用的集大成者

整体架构 架构解读 可以看到,DB-GPT把架构抽象为7层,自下而上分别为: 运行环境:支持本地/云端&单机/分布式等部署方式。顺便一提,RAY是蚂蚁深度参与的一个开源项目,所以对RAY功能的支持应该非常完善。…

matlab 声音信号希尔伯特黄变换

1、内容简介 略 91-可以交流、咨询、答疑 2、内容说明 略 Hilbert-Huang变换(HHT)是一种基于经验的数据分析方法 方法。它的扩展基础是自适应的,因此它可以从非线性和非平稳过程中产生具有物理意义的数据表示。这个 适应性的优势是有代价…

MySQL --- 库的操作

一、创建数据库 create database [ if not exists ] 数据库名; // []中的为可选项 在创建库时,也可以指定数据库采用的字符集(character set)和数据库字符集的校验规则(collate) (当我们创建数据库没有指定字符集和校验规则时,系统使用默认字符集&#x…

运行 npm install 报错-4048

我在已经开发中的项目,执行 npm install 命令时,出现报错: 并且之前在帖子中提到的报错类型还不一样(帖子内容如下): 运行 npm run dev 总报错_运行npm run dev报错-CSDN博客 该报错内容主要为权限导致的&…

华清数据结构day5 24-7-22

1>使用栈,完成进制转换输入:一个整数,进制数输出:该数的对应的进制数 seqstack.h #ifndef SEQSTACK_H #define SEQSTACK_H #define MAX 10 #include"myhead.h" typedef int datatype;typedef struct {datatype *d…

Nginx详解(超级详细)

目录 Nginx简介 1. 为什么使用Nginx 2. 安装Nginx Nginx的核心功能 1. Nginx反向代理功能 2. Nginx的负载均衡 3 Nginx动静分离 Nginx简介 Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,在BSD-like 协…

OpenCV分水岭算法watershed函数的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 描述 我们将学会使用基于标记的分水岭算法来进行图像分割。我们将看到:watershed()函数的用法。 任何灰度图像都可以被视为一个地形表…

199.二叉树的右视图(BFS)

给定一个二叉树的根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,null,5,null,4] 输出: [1,3,4] 示例 2: 输入: [1,null,3] 输出: [1,3] 示例 3: 输入: [] 输出: [] 解题…

centos/Ubuntu安装Java/Maven

上图就是今天在Linux环境下安装好Java和Maven后,打包Spring Boot项目的截图! 安装Java centos # 安装 yum install -y java-1.8.0-openjdk*# 查看版本检测是否成功安装 java -versionUbuntu # 更新软件包 sudo apt-get update# 安装 sudo apt-get in…

4.Java Web开发模式(javaBean+servlet+MVC)

Java Web开发模式 一、Java Web开发模式 1.javaBean简介 JavaBeans是Java中一种特殊的类,可以将多个对象封装到一个对象(bean)中。特点是可序列化,提供无参构造器,提供getter方法和setter方法访问对象的属性。名称中…

Java之 jvm

jvm之管理内存 程序计数器:当前线程所执行的字节码的行号指示器。程序计数器是唯一一个不会出现 OutOfMemoryError 的内存区域,它的生命周期随着线程的创建而创建,随着线程的结束而死亡。Java虚拟机栈 方法调用 一个方法调用都会有对应的栈帧…

set(集合),multiset容器及pair队组的创建

1.set的基本概念:所有元素再插入时自动按升序排序,set/multiset属于关联式容器,底层结构是用二叉树实现的 set与multiset区别: set中不允许容器中有重复的元素 multiset允许容器中有重复的元素 2.set的构造函数 3.set的大小和…

MT6701磁编码IC在自动化插件流水线中的应用

艾毕胜马达控制平台专家 MT6701磁编码IC作为现代工业自动化领域的重要组成部分,其在自动化插件流水线中的应用日益广泛。本文将从MT6701磁编码IC的特性、工作原理、在自动化插件流水线中的具体应用、以及未来的发展趋势等方面,详细探讨其在工业自动化领…

Apache POI-Excel入门与实战

目录 一、了解Apache POI 1.1 什么是Apache POI 1.2 为什么要使用ApaChe POI 1.3 Apache POI应用场景 1.4 Apache POI 依赖 二、Apache POI-Excel 入门案例 2.1 写入Excel文件 2.2 读取文件 四、Apache POI实战 4.1 创建一个获取天气的API 4.2高德天气请求API与响应…