分类预测 | Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积支持向量机分类预测
目录
- 分类预测 | Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积支持向量机分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果
基本描述
1.Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积支持向量机分类预测(完整源码和数据)
2.优化参数为:学习率,批量处理大小,正则化参数。
3.图很多,包括分类效果图,混淆矩阵图。
4.附赠案例数据可直接运行main一键出图~
注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
6.输入多个特征,分四类。
程序设计
- 完整程序和数据获取方式资源处下载Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积支持向量机分类预测
%% 优化算法参数设置
SearchAgents_no = 8; % 数量
Max_iteration = 5; % 最大迭代次数%% 建立模型
lgraph = layerGraph(); % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence") % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")]; % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same") % 建立卷积层,卷积核大小[3, 1],16个特征图reluLayer("Name", "relu_1") % Relu 激活层lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold") softmaxLayer("Name", "softmax") % softmax激活层classificationLayer("Name", "classification")]; % 分类层
lgraph = addLayers(lgraph, tempLayers); % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1"); % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in"); % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法'MaxEpochs', 500,... % 最大训练次数 'InitialLearnRate', best_lr,... % 初始学习率为0.001'L2Regularization', best_l2,... % L2正则化参数'LearnRateSchedule', 'piecewise',... % 学习率下降'LearnRateDropFactor', 0.1,... % 学习率下降因子 0.1'LearnRateDropPeriod', 400,... % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',... % 每次训练打乱数据集'ValidationPatience', Inf,... % 关闭验证'Plots', 'training-progress',... % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229