Redis核心技术与实战学习笔记

Redis核心技术与实战学习笔记

  • 最近想沉下心来看下redis,买了蒋德钧老师的《Redis 核心技术与实战》,这里记录一些学习笔记 希望能够坚持下去
  • 有想一起学习的童鞋,可以点击跳转到文章尾部获取学习资源,仅供学习不要用于任何商业用途!!!

redis知识全景图

  • 学习要有一个全局的系统观念

  • 在这里插入图片描述

redis问题画像图

  • redis问题可以多套到这个图中分析形成统一的印象
  • 问题 --> 主线 --> 技术点
  • 在这里插入图片描述

SimpleKV需要考虑的问题

  • 存什么样的数据

    • KV对 key为string,value为基本类型
  • 数据有哪些操作

    • 增删改查 PUT/GET/DEL/Scan
    • 不论是增删改查都涉及到索引问题,因为要先定位到key对应的内存位置再读写 这里有涉及到索引 可以考虑全局hash
      • 这里如果value是复杂结构 hash后还要再次用到不同的索引算法
    • 如果是增和删除 又涉及到内存管理 因为需要分配内存或者释放内存,如果value大小不一致 内存分配算法至关重要
  • 数据存在哪里

    • 存在内存比较快 但内存没了容易丢失,所以还要解决持久化的问题,每次都落地则性能不行,可定时落地到文件
  • 客户端怎么访问

    • .so动态连接库 单机访问
    • socket连接 可以跨机器 但要解决连接管理,协议解析
    • 多个客户端并发访问 如何高性能 涉及到IO模型
  • 容灾怎么来做

    • 涉及到主从或者集群
  • 重启后怎么快速初始化或者恢复

    • 也是涉及到持久化

    • 在这里插入图片描述

redis数据结构

值的数据类型

  • String、List、Hash、Set、sortedSet

KV保存用到的数据结构

整体图示

  • 在这里插入图片描述

  • 在 Redis 3.0 版本中 List 对象的底层数据结构由「双向链表」或「压缩表列表」实现,但是在 3.2 版本之后,List 数据类型底层数据结构是由 quicklist 实现的;

  • 在最新的 Redis 代码(还未发布正式版本)中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了

全局Hash索引示意

  • 在这里插入图片描述

hash冲突解决办法

  • 链式hash 冲突的时候用链表的方式保存冲突的数据,所以多个冲突的数据要遍历就要逐个遍历了

  • 在这里插入图片描述

  • 2个全局hash,渐进式rehash

    • 直接全量rehash涉及大量内存复制操作,可能阻塞客户端请求处理,所以采取的是渐进式rehash

    • 在这里插入图片描述

redis数据结构全景图_xiaolin

  • 在这里插入图片描述

  • redisDb 结构,表示 Redis 数据库的结构,结构体里存放了指向了 dict 结构的指针;

  • dict 结构,结构体里存放了 2 个哈希表,正常情况下都是用「哈希表1」,「哈希表2」只有在 rehash 的时候才用,具体什么是 rehash,我在本文的哈希表数据结构会讲;

  • ditctht 结构,表示哈希表的结构,结构里存放了哈希表数组,数组中的每个元素都是指向一个哈希表节点结构(dictEntry)的指针;

  • dictEntry 结构,表示哈希表节点的结构,结构里存放了 void * key 和 void * value 指针, *key 指向的是 String 对象,而 *value 则可以指向 String 对象,也可以指向集合类型的对象,比如 List 对象、Hash 对象、Set 对象和 Zset 对象

  • void * key 和 void * value 指针指向的是 Redis 对象

redisObject数据结构示意
  • 在这里插入图片描述

  • type,标识该对象是什么类型的对象(String 对象、 List 对象、Hash 对象、Set 对象和 Zset 对象);

  • encoding,标识该对象使用了哪种底层的数据结构;

  • ptr,指向底层数据结构的指针

简单字符串SDS(simple dynamic string)

SDS数据结构

struct SDS{len   //这样获取字符串长度的时候,只需要返回这个成员变量值就行,时间复杂度只需要 O(1)alloc //分配空间长度 类似capicity 分配给字符数组的空间长度。这样在修改字符串的时候,可以通过 alloc - len 计算出剩余的空间大小,可以用来判断空间是否满足修改需求,如果不满足的话,就会自动将 SDS 的空间				扩展至执行修改所需的大小,然后才执行实际的修改操作,所以使用 SDS 既不需要手动修改 SDS 的空间大小,也不会出现前面所说				的缓冲区溢出的问题当判断出缓冲区大小不够用时,Redis 会自动将扩大 SDS 的空间大小(小于 1MB 翻倍扩容,大于 1MB 按 1MB 扩容flag  //用来表示不同类型的 SDS。一共设计了 5 种类型,分别是 sdshdr5、sdshdr8、sdshdr16、sdshdr32 和 sdshdr64每种类型占用内存不一样 更加灵活 而且是禁止内存字节对齐的,节省内存buf[] 字符数组,用来保存实际数据。不仅可以保存字符串,也可以保存二进制数据  
}

链表List

typedef struct listNode {//前置节点struct listNode *prev;//后置节点struct listNode *next;//节点的值void *value;
} listNode;
在这个基础上增加
typedef struct list {//链表头节点listNode *head;//链表尾节点listNode *tail;//节点值复制函数void *(*dup)(void *ptr);//节点值释放函数void (*free)(void *ptr);//节点值比较函数int (*match)(void *ptr, void *key);//链表节点数量unsigned long len;
} list;
  • 在这里插入图片描述

Redis 的链表实现优点如下:

  • listNode 链表节点的结构里带有 prev 和 next 指针,获取某个节点的前置节点或后置节点的时间复杂度只需O(1),而且这两个指针都可以指向 NULL,所以链表是无环链表
  • list 结构因为提供了表头指针 head 和表尾节点 tail,所以获取链表的表头节点和表尾节点的时间复杂度只需O(1)
  • list 结构因为提供了链表节点数量 len,所以获取链表中的节点数量的时间复杂度只需O(1)
  • listNode 链表节使用 void* 指针保存节点值,并且可以通过 list 结构的 dup、free、match 函数指针为节点设置该节点类型特定的函数,因此链表节点可以保存各种不同类型的值

链表的缺陷也是有的:

  • 链表每个节点之间的内存都是不连续的,意味着无法很好利用 CPU 缓存。能很好利用 CPU 缓存的数据结构就是数组,因为数组的内存是连续的,这样就可以充分利用 CPU 缓存来加速访问。
  • 还有一点,保存一个链表节点的值都需要一个链表节点结构头的分配,内存开销较大

因此,Redis 3.0 的 List 对象在数据量比较少的情况下,会采用「压缩列表」作为底层数据结构的实现,它的优势是节省内存空间,并且是内存紧凑型的数据结构。

不过,压缩列表存在性能问题(具体什么问题,下面会说),所以 Redis 在 3.2 版本设计了新的数据结构 quicklist,并将 List 对象的底层数据结构改由 quicklist 实现。

然后在 Redis 5.0 设计了新的数据结构 listpack,沿用了压缩列表紧凑型的内存布局,最终在最新的 Redis 版本,将 Hash 对象和 Zset 对象的底层数据结构实现之一的压缩列表,替换成由 listpack 实现。

压缩列表

压缩列表的最大特点,就是它被设计成一种内存紧凑型的数据结构,占用一块连续的内存空间,不仅可以利用 CPU 缓存,而且会针对不同长度的数据,进行相应编码,这种方法可以有效地节省内存开销。

但是,压缩列表的缺陷也是有的:

  • 不能保存过多的元素,否则查询效率就会降低;
  • 新增或修改某个元素时,压缩列表占用的内存空间需要重新分配,甚至可能引发连锁更新的问题。

因此,Redis 对象(List 对象、Hash 对象、Zset 对象)包含的元素数量较少,或者元素值不大的情况才会使用压缩列表作为底层数据结构。

  • 在这里插入图片描述

  • *zlbytes*,记录整个压缩列表占用对内存字节数;

  • *zltail*,记录压缩列表「尾部」节点距离起始地址由多少字节,也就是列表尾的偏移量;

  • *zllen*,记录压缩列表包含的节点数量;

  • *zlend*,标记压缩列表的结束点,固定值 0xFF(十进制255)。

  • *prevlen*,记录了「前一个节点」的长度;

  • *encoding*,记录了当前节点实际数据的类型以及长度;

  • *data*,记录了当前节点的实际数据;

    当我们往压缩列表中插入数据时,压缩列表就会根据数据是字符串还是整数,以及数据的大小,会使用不同空间大小的 prevlen 和 encoding 这两个元素里保存的信息,这种根据数据大小和类型进行不同的空间大小分配的设计思想,正是 Redis 为了节省内存而采用的

    分别说下,prevlen 和 encoding 是如何根据数据的大小和类型来进行不同的空间大小分配。

    压缩列表里的每个节点中的 prevlen 属性都记录了「前一个节点的长度」,而且 prevlen 属性的空间大小跟前一个节点长度值有关,比如:

    • 如果前一个节点的长度小于 254 字节,那么 prevlen 属性需要用 1 字节的空间来保存这个长度值;
    • 如果前一个节点的长度大于等于 254 字节,那么 prevlen 属性需要用 5 字节的空间来保存这个长度值;

    encoding 属性的空间大小跟数据是字符串还是整数,以及字符串的长度有关:

    • 如果当前节点的数据是整数,则 encoding 会使用 1 字节的空间进行编码。
    • 如果当前节点的数据是字符串,根据字符串的长度大小,encoding 会使用 1 字节/2字节/5字节的空间进行编码。
    连锁更新

    压缩列表除了查找复杂度高的问题,还有一个问题。

    压缩列表新增某个元素或修改某个元素时,如果空间不不够,压缩列表占用的内存空间就需要重新分配。而当新插入的元素较大时,可能会导致后续元素的 prevlen 占用空间都发生变化,从而引起「连锁更新」问题,导致每个元素的空间都要重新分配,造成访问压缩列表性能的下降

    前面提到,压缩列表节点的 prevlen 属性会根据前一个节点的长度进行不同的空间大小分配:

    • 如果前一个节点的长度小于 254 字节,那么 prevlen 属性需要用 1 字节的空间来保存这个长度值;
    • 如果前一个节点的长度大于等于 254 字节,那么 prevlen 属性需要用 5 字节的空间来保存这个长度值;

    现在假设一个压缩列表中有多个连续的、长度在 250~253 之间的节点

    ​ 因为这些节点长度值小于 254 字节,所以 prevlen 属性需要用 1 字节的空间来保存这个长度值

    这时,如果将一个长度大于等于 254 字节的新节点加入到压缩列表的表头节点,即新节点将成为 e1 的前置节点

    • 在这里插入图片描述

e1 原本的长度在 250~253 之间,因为刚才的扩展空间,此时 e1 的长度就大于等于 254 了,因此原本 e2 保存 e1 的 prevlen 属性也必须从 1 字节扩展至 5 字节大小。

正如扩展 e1 引发了对 e2 扩展一样,扩展 e2 也会引发对 e3 的扩展,而扩展 e3 又会引发对 e4 的扩展…. 一直持续到结尾。

这种在特殊情况下产生的连续多次空间扩展操作就叫做「连锁更新」,就像多米诺牌的效应一样,第一张牌倒下了,推动了第二张牌倒下;第二张牌倒下,又推动了第三张牌倒下….,

压缩列表的缺陷

空间扩展操作也就是重新分配内存,因此连锁更新一旦发生,就会导致压缩列表占用的内存空间要多次重新分配,这就会直接影响到压缩列表的访问性能

所以说,虽然压缩列表紧凑型的内存布局能节省内存开销,但是如果保存的元素数量增加了,或是元素变大了,会导致内存重新分配,最糟糕的是会有「连锁更新」的问题

因此,压缩列表只会用于保存的节点数量不多的场景,只要节点数量足够小,即使发生连锁更新,也是能接受的。

虽说如此,Redis 针对压缩列表在设计上的不足,在后来的版本中,新增设计了两种数据结构:quicklist(Redis 3.2 引入) 和 listpack(Redis 5.0 引入)。这两种数据结构的设计目标,就是尽可能地保持压缩列表节省内存的优势,同时解决压缩列表的「连锁更新」的问题。

仅供学习 切记用于任何商业用途

关注 _微_信_公_众_号 疯子爱淡定 回复 Redis核心技术学习

  • 在这里插入图片描述

Hash

typedef struct dict {…//两个Hash表,交替使用,用于rehash操作dictht ht[2]; …
} dict;
---------------------------->
typedef struct dictht {//哈希表数组dictEntry **table;//哈希表大小unsigned long size;  //哈希表大小掩码,用于计算索引值unsigned long sizemask;//该哈希表已有的节点数量unsigned long used;
} dictht;
---------------------------->
typedef struct dictEntry {//键值对中的键void *key;//键值对中的值union {void *val;uint64_t u64;int64_t s64;double d;} v;//指向下一个哈希表节点,形成链表struct dictEntry *next;
} dictEntry;
负载因子=已保存节点数量/hash表大小
  • 当负载因子大于等于 1 ,并且 Redis 没有在执行 bgsave 命令或者 bgrewiteaof 命令,也就是没有执行 RDB 快照或没有进行 AOF 重写的时候,就会进行 rehash 操作。
  • 当负载因子大于等于 5 时,此时说明哈希冲突非常严重了,不管有没有有在执行 RDB 快照或 AOF 重写,都会强制进行 rehash 操作

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/382579.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中断和EXIT原理介绍

中断和EXIT原理介绍 一、中断的介绍?二、EXIT的介绍1.EXIT作用2.EXIT的详情3.EXIT中AFIO复用的作用4.STM32中AFIO复用作用 一、中断的介绍? 二、EXIT的介绍 EXTI(Extern Interrupt)外部中断 1.EXIT作用 EXTI可以监测指定GPIO口…

编写SpringBoot的自定义starter包

starter项目 先来看一下Starter的官方解释: Spring Boot Starter 是一种方便的依赖管理方式,它封装了特定功能或技术栈的所有必要依赖项和配置,使得开发者可以快速地将这些功能集成到Spring Boot项目中。Spring Boot官方提供了一系列的Star…

OpenTeleVision复现及机器人迁移

相关信息 标题 Open-TeleVision: Teleoperation with Immersive Active Visual Feedback作者 Xuxin Cheng1 Jialong Li1 Shiqi Yang1 Ge Yang2 Xiaolong Wang1 UC San Diego1 MIT2主页 https://robot-tv.github.io/链接 https://robot-tv.github.io/resources/television.pdf代…

展馆导览系统架构解析,从需求分析到上线运维

在物质生活日益丰富的当下,人们对精神世界的追求愈发强烈,博物馆、展馆、纪念馆等场所成为人们丰富知识、滋养心灵的热门选择。与此同时,人们对展馆的导航体验也提出了更高要求,展馆导览系统作为一种基于室内外地图相结合的位置引…

NSSCTF-2021年SWPU联合新生赛

[SWPUCTF 2021 新生赛]finalrce 这道题目考察tee命令和转义符\ 这题主要是,遇到一种新的符号,"\"—转义符。我理解的作用就是在一些控制字符被过滤的时候,可以用转义符,让控制符失去原本的含义,变为字面量…

【数据结构 | 哈希表】一文了解哈希表(散列表)

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…

Spring框架、02SpringAOP

SpringAOP 日志功能 基本方法 分析代码问题 目前代码存在两个问题 代码耦合性高:业务代码和日志代码耦合在了一起 代码复用性低:日志代码在每个方法都要书写一遍 问题解决方案 使用动态代理,将公共代码抽取出来 JDK动态代理 使用JDK动…

英迈中国与 Splashtop 正式达成战略合作协议

2024年7月23日,英迈中国与 Splashtop 正式达成战略合作协议,英迈中国正式成为其在中国区的战略合作伙伴。此次合作将结合 Splashtop 先进的远程桌面控制技术和英迈在技术服务与供应链管理领域的专业优势,为中国地区的用户带来更加安全的远程访…

IEDA怎么把springboot项目 启动多个

利用Idea提供的Edit Configurations配置应用参数。 点击Modify Options进行添加应用参数: 确保这里勾选

centos系统mysql主从复制(一主一从)

文章目录 mysql80主从复制(一主一从)一、环境二、服务器master1操作1.开启二进制日志2. 创建复制用户3. 服务器 slave1操作4. 在主数据库中添加数据 mysql80主从复制(一主一从) 一、环境 准备两台服务器,都进行以下操…

前端在浏览器总报错,且获取请求头中token的值为null

前端请求总是失败说受跨域请求影响,但前后端配置已经没有问题了,如下: package com.example.shop_manage_sys.config;import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.annotation.Conf…

Java使用AsposePDF和AsposeWords进行表单填充

声明:本文为作者Huathy原创文章,禁止转载、爬取!否则,本人将保留追究法律责任的权力! 文章目录 AsposePDF填充表单adobe pdf表单准备引入依赖编写测试类 AsposeWord表单填充表单模板准备与生成效果引入依赖编码 参考文…

代理协议解析:如何根据需求选择HTTP、HTTPS或SOCKS5?

代理IP协议是一种网络代理技术,可以实现隐藏客户端IP地址、加速网站访问、过滤网络内容、访问内网资源等功能。常用的IP代理协议主要有Socks5代理、HTTP代理、HTTPS代理这三种。代理IP协议主要用于分组交换计算机通信网络的互联系统中使用,只负责数据的路…

高效部署Modbus转MQTT网关:Modbus RTU、Modbus TCP转MQTT

钡铼Modbus转MQTT网关,简而言之,就是通过将Modbus协议(包括Modbus RTU和Modbus TCP)的数据转换为MQTT协议的数据格式,从而实现设备数据的上传和云端控制指令的下发。这一转换过程使得设备能够与基于MQTT协议的云平台进…

修改 Tomcat 默认端口号最简单的方法

前言 每次在创建一个新的Maven项目之后,启动项目总会报8080端口号被占用的问题,既然每次都有这样的困扰,那不如一了百了,直接修改默认的8080端口号。 (如果还是想要默认端口号。可参考我主页文章杀死占用了8080的进程…

CSA笔记4-包/源管理命令以及本地光盘仓库搭建

包/源管理命令 1.rpm是最基础的rmp包的安装命令,需要提前下载相关安装包和依赖包 2.yum/dnf是基于rpm包的自动安装命令,可以自动在仓库中匹配安装软件和依赖包 注意:以上是安装命令,以下是安装源 3.光盘源:是指安装系统时后的…

Pytorch TensorBoard的使用

from torch.utils.tensorboard import SummaryWriter writer SummaryWriter("logs")for i in range(100):writer.add_scalar("yx",i,i) writer.close() 第一个参数 y2x: 这是图表的标题或标签。它会显示在TensorBoard界面中,帮助你识别这条曲线。 第二个参…

【分布式锁】Redission实现分布式锁

接着上一节,我们遇到了超卖的问题,并通过Redis实现分布式锁,进行了解决。本节 我将换一种方式实现分布式锁。 前提: nginx、redis、nacos 模块1: provider-and-consumer 端口 8023 模块2 rabbitmq-consumer 端口 8021 …

opencascade AIS_InteractiveContext源码学习9 obsolete methods

AIS_InteractiveContext 前言 交互上下文(Interactive Context)允许您在一个或多个视图器中管理交互对象的图形行为和选择。类方法使这一操作非常透明。需要记住的是,对于已经被交互上下文识别的交互对象,必须使用上下文方法进行…

CSS3雷达扫描效果

CSS3雷达扫描效果https://www.bootstrapmb.com/item/14840 要创建一个CSS3的雷达扫描效果,我们可以使用CSS的动画(keyframes)和transform属性。以下是一个简单的示例,展示了如何创建一个类似雷达扫描的动画效果: HTM…