【OpenCV C++20 学习笔记】基本图像容器——Mat

【OpenCV C++20 学习笔记】基本图像容器——Mat

  • 概述
  • `Mat`
    • 内部结构
    • 引用计数机制
    • 颜色数据格式
  • 显式创建`Mat`对象
    • 使用`cv::Mat::Mat`构造函数
      • 矩阵的数据项
    • 使用数组进行初始化的构造函数
    • `cv::Mat::create`函数
    • MATLAB风格的初始化
    • 小型矩阵
    • 通过复制创建`Mat`对象
  • `Mat`对象的输出
  • 其他普通数据项的输出

概述

电子设备中储存的图像本质是图像在每个像素点上的数值,这些数据形成一个矩阵,除此之外还包括一些描述这个数值矩阵的信息。OpenCV作为一个计算机视觉库,同样也是要处理这样的信息。所以,要学习OpenCV,首要的事情是了解在OpenCV中是如何储存图像的数值矩阵以及描述信息的。
(本文较长,详细介绍了Mat对象的原理、创建方式和输出方式,读者可根据目录跳转至相关章节)

Mat

2001年OpenCV诞生的时候,是在C语言的接口上创建的,并将图像储存在一个称作IplImage的C语言数据结构中。这种方式最大的一个缺点就是需要用户自己管理内存。如果是小型的项目尚可,如果数据量变大,管理内存就会使人很头疼。
OpenCV2.0 引入了C++接口,实现了内存的自动管理。Mat成为了OpenCV储存图片信息的数据结构。
Mat不需要手动分配或释放内存,大部分的OpenCV方法都会自动为输出的Mat对象分配内存。如果你已经为一个Mat对象分配了它需要的内存,那么你在传输它的时候,这个内存会被重复利用。也就是说,在执行任务的时候,不会使用多余的内存。

内部结构

Mat实质上是一个包含了两个部分的类:

  • 矩阵头(matrix header):它包含了矩阵的大小、存储方式、存储地址等信息
  • 指向矩阵的指针:Mat对象只是储存了矩阵的指针,并没有储存矩阵本身,而矩阵中包含了像素值(像素值矩阵的维度由存储方式决定)
    Mat对象的大小是固定的,但是矩阵本身的大小是跟随图像变化的。
    在函数间传递图像是OpenCV中非常常见的操作,而且某些图像处理算法很复杂。为了提高程序的运行速度,OpenCV使用了“引用计数机制”。每个Mat对象都有自己独立的矩阵头,但是同一个矩阵可能会被多个Mat对象共享,即多个Mat对象的指针可能会指向内存中的同一个矩阵。而复制操作只会复制Mat对象的矩阵头以及指向矩阵的指针,并不会直接复制矩阵的数值!

下面的代码详细展示了Mat对象在实际应用中的内存分配问题:

Mat A, C;	//创建Mat对象的时候只是创建了矩阵头的部分
A = imread(argv[1], IMREAD_COLOR);	//读取图片,分配内存存储图片的数值矩阵,并将A的指针指向这个矩阵的内存地址Mat B(A);	//调用复制构造函数创建B,但仅仅是将A中的指向图片矩阵的指针复制到B中,并没有复制图片的数值矩阵C = A;	//赋值操作也只是将A中的指针复制到C中

上面的代码最终使A、B、C3个Mat对象中的指针都指向同一个图片的数值矩阵,虽然进行了复制和赋值操作,但内存中始终只有一个数值矩阵,如下图:
Mat对象示意图
因为3个Mat对象的指针都是指向同一个数据矩阵,所以在任何一个Mat对象中对数据矩阵进行修改都会影响到其他Mat对象。实际上,不同的Mat对象只是为处理同一个数据矩阵提供了不同的使用方法。但是这些Mat对象的矩阵头部分是不同的,你甚至可以创建一个只指向数据矩阵的其中一部分的Mat对象。例如,要想在图像中创建一个感兴趣区域(region of interest,ROI),你可以新建一个Mat对象:

Mat D(A, Rect(10, 10, 100, 100);	//使用矩形区域
Mat E = A(Range::all(), Range(1, 3));	//使用行和列

引用计数机制

如果像上面的例子一样,同一个数据矩阵属于不同的Mat对象,那到底谁来负责释放它的内存呢?答案是:最后一个使用它的Mat对象。这就是通过上面所说的“引用计数机制”来实现的。当有指向数据矩阵A的Mat对象被复制的时候,矩阵A的引用计数就会增加;当有指向矩阵A的Mat对象被销毁的时候,矩阵A的引用计数就会减少。当计数为0的时候,矩阵A就会被释放。
OpenCV还提供了深度复制数据矩阵的方法,当你不想只是复制指针,而是想复制矩阵的值的时候,可以使用cv::Mat::clone()cv::Mat::copyTo()方法。

Mat F = A.clone();	//将A指向的数据矩阵复制给F
Mat G;
A.copyTo(G);	//将A指向的数据矩阵复制到G

这样,修改F和G的时候就不会影响A指向的数据矩阵了。

总结一下:

  • OpenCV中函数导出的图像数据是自动分配内存的(除非特别指定不自动分配)
  • 使用OpenCV的C++接口的时候不用考虑内存管理的问题
  • 赋值运算符和复制构造函数只是复制Mat对象的头部信息和指针
  • 可以用cv::Mat::clone()cv::Mat::copyTo()方法实现底层的图片数据矩阵的复制

颜色数据格式

对于如何储存像素的值,通常从两个方面考虑:颜色空间和数据类型。
颜色空间是指利用基本的颜色组合成特定的颜色的方式。有多种方式可以选择:

  • RGB:这是最常用的,因为它与人眼编码颜色的方式相似;由红、绿、蓝3中基本颜色的值,加上透明度alpha,来确定最终颜色;注意,OpenCV中的标准颜色显示系统为BGR,红色和蓝色的值调换了位置
  • HSV和HLS:将颜色分解为色调、饱和度和亮度;这种方式能更方便地处理图片的亮度
  • YCrCb:这是JPEG格式的图片常用的颜色编码方式
  • CIT Lab*:这种编码方式能够方便测量两种颜色之间的差距
  • 灰度:只有黑色和白色两种基本颜色

显式创建Mat对象

使用cv::Mat::Mat构造函数

Mat M(2,2, CV_8U3, Scalar(0,0,255));
cout << "M = " << endl << " " << M << endl << endl;

这里使用了Mat类的其中一个构造函数。该构造函数一共包括4个参数:

  1. 行数:定义矩阵行数
  2. 列数:定义矩阵列数
  3. 数据类型:定义每个数据项的类型,下文详述
  4. Scalar常量:用来定义每个数据项的值的向量数组

矩阵的数据项

矩阵数据项的数据类型的定义遵循以下语法规则:
CV_[每个数据项的比特数][有符号或无符号][类型前缀]C[通道数量]

  • 比特数:确定每个数据项,即像素点,的数值的长度,如8比特;比特数越高,每个像素点的值域就越大,比如,32比特的浮点类型比8比特的char类型能够储存更多的颜色值
  • 有符号或无符号:确定每个数据项的值是否是有符号的(可省略,默认为无)
  • 类型前缀:如果是char类型,则为C,如果是float类型,则为F……
  • 通道数量:确定每个数据项中包含的颜色通道数量;比如,RGB颜色空间可以有4个通道,分别是红色值、绿色值、蓝色值和透明度值;通道数量可以加上括号,如CV_8UC(3) (可省略,默认为1)
    上面代码中的CV_8U3就代表每个数据项的是具有3个通道的8比特无符号的值,输出结果如下:
    Mat构造函数创建Mat对象
    可以看到矩阵中每个项有3个数值,代表3个颜色通道;共有2*2个项;每个项中的3个颜色通道的值都与Scalar中定义的相同。

使用数组进行初始化的构造函数

除了2维的矩阵,也可以创建3维矩阵的Mat对象

int sz[3]{ 2,2,2 };
Mat L(3, sz, CV_8UC1, Scalar::all(0));

这个构造函数也使用4个参数:

  1. 维度:确定矩阵的维度
  2. 大小:一个数组,用来确定每个维度的大小
  3. 数据项的数据类型:同上一个构造函数
  4. Scalar常量:同上一个构造函数
    所以,这里创建了一个3维的矩阵,每个维度都只有2个数据项,即222;每个数据项使用的都是只有1个颜色通道的8比特无符号数值;每个数据项的值都为0。

cv::Mat::create函数

这个函数看起来像是在创建一个Mat对象,但其实它只能修改已有的Mat对象。
比如,对上面创建的M对象进行修改:

M.create(4, 4, CV_8UC2);
cout << "M = "<< endl << " " << M << endl << endl;

cv::Mat::create函数使用了3个参数:

  1. 行数:修改后的行数
  2. 列数:修改后的列数
  3. 数据项类型:修改后的数据项类型
    输出结果为:
    修改Mat对象
    可以看到原本22的3颜色通道的矩阵变成了44的2颜色通道矩阵。cv::Mat::create函数为M对象重新分配了内存,使其能储存修改之后的更大的矩阵。

MATLAB风格的初始化

cv::Mat::zeros, cv::Mat::ones, cv::Mat::eye等与MATLAB语言类似的函数也可以用来初始化OpenCV中的Mat对象
zeros函数用来创建全为0值的矩阵;ones函数用来创建全为1值的矩阵;eye函数用来创建对角线为1,其他值为0的矩阵

 Mat E {Mat::eye(4, 4, CV_64F)};cout << "E = " << endl << " " << E << endl << endl;Mat O {Mat::ones(2, 2, CV_32F)};cout << "O = " << endl << " " << O << endl << endl;Mat Z {Mat::zeros(3,3, CV_8UC1)};cout << "Z = " << endl << " " << Z << endl << endl;

这些函数都使用相同的参数列表:

  1. 行数
  2. 列数
  3. 数据项类型
    输出结果如下:
    MATLAB风格的Mat构造函数

小型矩阵

如果要构造小型矩阵,可以直接以逗号为间隔,用<<运算符将每个值一行一行依次输入;
在C++11之后,也可以使用{}风格的初始化列表

//<<运算符Mat C = (Mat_<double>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);cout << "C = " << endl << " " << C << endl << endl;//初始化列表C = (Mat_<double>({0, -1, 0, -1, 5, -1, 0, -1, 0})).reshape(3);	//reshape函数将矩阵中的数据项变成3通道类型cout << "C = " << endl << " " << C << endl << endl;

输出结果如下:
小型矩阵

通过复制创建Mat对象

要复制Mat对象,需要第二节讲的使用cv::Mat::clonecv::Mat::copyTo 函数

Mat对象的输出

上面的例子中的输出使用的都是默认格式,但还有几种其他的输出格式
首先使用随机数创建一个3通道的3*2矩阵

 Mat R {Mat(3, 2, CV_8UC3)};randu(R, Scalar::all(0), Scalar::all(255));

cv::randu()为随机数生成函数,使用3个参数:

  1. Mat对象:用来储存随机值的Mat对象
  2. 最低值:Scalar常量类型,确定随机数的最小值
  3. 最高值:Scalar常量类型,确定随机数的最大值
    接下来使用format函数定义输出格式,该函数使用两个参数:
  4. Mat对象:需要输出的Mat对象
  5. 格式定义:在Formatter中定义的枚举类型
    详见以下代码:
cout << "R (default) = " << endl << " " << R << endl << endl;
cout << "R (Python) = " << endl << format(R, Formatter::FMT_PYTHON) << endl << endl;
cout << "R (csv) = " << endl << format(R, Formatter::FMT_CSV) << endl << endl;
cout << "R (numpy) = " << endl << format(R, Formatter::FMT_NUMPY) << endl << endl;
cout << "R (C) = " << endl << format(R, Formatter::FMT_C) << endl << endl;

输出结果如下:
Mat对象的输出格式

其他普通数据项的输出

OpenCV中的大部分数据结构都支持<<运算符
以下代码展示了如何运用<<运算符输出点、向量类型的对象

Point2f P(5, 1);
cout << "Point (2D)= " << P << endl << endl;Point3f P3f(2, 6, 7);
cout << "Point (3D) = " << P3f << endl << endl;vector<float> v;
v.push_back((float)CV_PI); v.push_back(2); v.push_back(3.01f);
cout << "Vector of floats via Mat = " << Mat(v) << endl << endl;vector<Point2f> vPoints(20);
for (size_t i = 0; i < vPoints.size(); ++i)vPoints[i] = Point2f((float)(i * 5), (float)(i % 7));
cout << "A vector of 2D Points = " << vPoints << endl << endl;

输出结果如下:

输出数据对象

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/384198.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在图神经网络(GNN)上进行关系推理的新架构

开发能够学习推理的模型是一个众所周知的具有挑战性的问题&#xff0c;在这个领域中&#xff0c;使用图神经网络&#xff08;GNNs&#xff09;似乎是一个自然的选择。然而&#xff0c;以往关于使用GNNs进行推理的工作表明&#xff0c;当这些模型面对需要比训练时更长推理链的测…

某数据泄露防护(DLP)系统NoticeAjax接口SQL注入漏洞复现 [附POC]

文章目录 某数据泄露防护(DLP)系统NoticeAjax接口SQL注入漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现某数据泄露防护(DLP)系统NoticeAjax接口SQL注入漏洞复现 [附POC] 0x01 前言 免责声明:请勿利用文章内…

SpringBoot 项目配置文件注释乱码的问题解决方案

一、问题描述 在项目的配置文件中&#xff0c;我们写了一些注释&#xff0c;如下所示&#xff1a; 但是再次打开注释会变成乱码&#xff0c;如下所示&#xff1a; 那么如何解决呢&#xff1f; 二、解决方案 1. 点击” File→Setting" 2. 搜索“File Encodings”, 将框…

DDoS 究竟在攻击什么?

分布式拒绝服务&#xff08;DDoS&#xff09;攻击是一种常见的网络攻击形式&#xff0c;攻击者通过向目标服务端发送大量的请求&#xff0c;使目标服务端无法进行网络连接&#xff0c;无法正常提供服务。 DDoS 攻击通常是由大量的分布在全球各地的 “僵尸” 计算机&#xff08…

力扣高频SQL 50题(基础版)第七题

文章目录 力扣高频SQL 50题&#xff08;基础版&#xff09;第七题1068. 产品销售分析 I题目说明思路分析实现过程准备数据&#xff1a;实现方式&#xff1a;结果截图:总结&#xff1a; 力扣高频SQL 50题&#xff08;基础版&#xff09;第七题 1068. 产品销售分析 I 题目说明 …

Android adb shell ps进程查找以及kill

Android adb shell ps进程查找以及kill 列出当前Android手机上运行的所有进程信息如PID等&#xff1a; adb shell ps 但是这样会列出一大堆进程信息&#xff0c;不便于定向查阅&#xff0c;可以使用关键词查找&#xff1a; adb shell "ps | grep 关键词" 关键词查…

Mysql中如何实现两列的值互换?给你提供些思路。

文章目录 Mysql中如何实现两列的值互换1、第一感觉此sql应该能处理问题了2、需要一个地方存要替换的值&#xff0c;不然两列搞不定。2.1 加第三列&#xff1f;&#xff08;能解决&#xff0c;但是看起来呆呆&#xff09;2.2 上临时表&#xff08;搞点弯路走走&#xff09; 示例…

Linux学习第55天:Linux 4G 通信实验(更快、更高、更强)

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 无论是有线网络还是WiFi都是摆脱不了布线的尴尬&#xff0c;而4G通信可以彻底拜托网线的束缚&#xff0c;实现无线网络通信。 而说到4G就不得不提到5G&#xff0c;中…

jenkins删除历史构建记录

1、 登录jenkins&#xff0c;进入【Manage Jenkins】-【Script Console】&#xff0c;输入&#xff1a; def jobName "Test" //删除的项目名称 def maxNumber 60 // 保留的最小编号&#xff0c;意味着小于该编号的构建都将被删除 Jenkins.instance.getItemByFullN…

单元测试--Junit

Junit是Java的单元测试框架提供了一些注解方便我们进行单元测试 1. 常用注解 常用注解&#xff1a; TestBeforeAll&#xff0c;AfterAllBeforeEach&#xff0c;AfterEach 使用这些注解需要先引入依赖&#xff1a; <dependency><groupId>org.junit.jupiter<…

Vue3与Element-plus配合 直接修改表格中的一项数据——控制输入框的显示与隐藏

利用控制与隐藏输入框,直接修改表格中的每一项数据。 <!-- 表格模块 --> <div><el-table :data"tablelist" style"width: 100%"><el-table-column align"center" prop"deposit" label"接单押金">&l…

【 C++ 】 一文搞定——引用、内联、命名空间、缺省、重载

前言&#xff1a;这篇文章将带您了解C基础中的知识点——命名空间、引用、内联、缺省、重载 &#x1f618;我的主页&#xff1a;OMGmyhair-CSDN博客 一、命名空间namespace 1.可以嵌套定义&#xff0c;但是只能定义在全局 namespace ly {int student 1;int age 21;void Pr…

windows wsl ubuntu系统安装桌面可视化

参考&#xff1a; https://www.bilibili.com/read/cv33557374/ 1&#xff09;首先先安装好wsl ubuntu系统 2&#xff09;安装 Ubuntu 桌面版 sudo apt purge -y acpid acpi-support modemmanagersudo apt-mark hold acpid acpi-support modemmanager sudo apt install ubunt…

数据库连接断开后,DBAPI的数据源如何自动重连

现象 在使用DBAPI的过程中&#xff0c;如果网络抖动导致数据库连接不上&#xff0c;发现DBAPI的数据源不能重连&#xff0c;必须重启DBAPI才能连上数据库 解决办法 在数据源的连接池参数配置druid.breakAfterAcquireFailurefalse注意在企业版的4.1.1及以上版本才可以配置连接…

捉虫笔记(1)之 WinDbg符号配置

WinDbg符号配置 1、WinDbg简单介绍 WinDbg 是微软的一款强大的调试工具&#xff0c;用于 Windows 平台的内核和用户模式调试。它提供了一系列强大的功能&#xff0c;包括内存和寄存器的查看、断点设置、堆栈跟踪、性能分析等。 WinDbg 的历史可以追溯到微软早期的调试工具&a…

OceanBase v4.2 特性解析:如何实现表级恢复

背景 在某些情况下&#xff0c;你可能会因为误操作而遇到表数据损坏或误删表的情况。为了能在事后将表数据恢复到某个特定时间点&#xff0c;在OceanBase尚未有表级恢复功能之前&#xff0c;你需要进行以下步骤&#xff1a; 利用OceanBase提供的物理恢复工具&#xff0c;您可…

ESP8266用AT指令实现连接MQTT

1准备工作 硬件&#xff08;ESP8266&#xff09;连接电脑 硬件已经烧入了MQTT透传固件 2实现连接 2-1&#xff08;进入AT模式&#xff09; 打开串口助手发送如下指令 AT 2-2&#xff08;复位&#xff09; ATRST 2-3&#xff08;开启DHCP&#xff0c;自动获取IP&#x…

Java二十三种设计模式-代理模式模式(8/23)

代理模式&#xff1a;为对象访问提供灵活的控制 引言 代理模式&#xff08;Proxy Pattern&#xff09;是一种结构型设计模式&#xff0c;它为其他对象提供一个代替或占位符&#xff0c;以控制对它的访问。 基础知识&#xff0c;java设计模式总体来说设计模式分为三大类&#…

基于 HTML+ECharts 实现智慧运维数据可视化大屏(含源码)

智慧运维数据可视化大屏&#xff1a;基于 HTML 和 ECharts 的实现 在现代企业中&#xff0c;运维管理是确保系统稳定运行的关键环节。随着数据量的激增&#xff0c;如何高效地监控和分析运维数据成为了一个重要课题。本文将介绍如何利用 HTML 和 ECharts 实现一个智慧运维数据可…

14、如何⽤DDD设计微服务代码模型

在完成领域模型设计后&#xff0c;接下来我们就可以开始微服务的设计和 落地了。在微服务落地前&#xff0c;⾸先要确定微服务的代码结构&#xff0c;也就是我 下⾯要讲的微服务代码模型。 只有建⽴了标准的微服务代码模型和代码规范后&#xff0c;我们才可以将 领域对象映射到…