传输层协议——TCP

TCP协议

TCP全称为“传输控制协议”,要对数据的传输进行一个详细的控制。

特点

  • 面向连接的
  • 可靠性
  • 字节流

TCP的协议段格式

在这里插入图片描述

  • 源/目的端口:表示数据从哪个进程来,到哪个进程
  • 4位首部长度:表示该TCP头部有多少字节(注意它的单位是4字节),因为TCP报头的范围为[20,60],所以4位首部长度范围就是[5,15]
  • 16位校验和:校验报文是否符合要求,不符合直接丢弃

6位标记位

  • URG:紧急指针是否有效
  • ACK:确认号是否有效
  • PSH:提示服务端立刻将TCP缓冲区的数据读走
  • RST:对方要求重新建立链接
  • SYN:请求建立连接,我们携带SYN标识的称为同步报文段
  • FIN:通知对方,本端将断开连接。

我将从下面的几个场景中来阐述一下TCP中协议段格式的每个含义。

ACK确认应答机制

在这里插入图片描述

当我们主机A发送数据的时候,主机B需要给主机A发送“已收到”(ACK),这时主机A开知道数据已经发送到了主机B。但如果主机B想要发数据给主机A,那么就又要需要一次write了,所以效率其实是不高的,所以有了后面的捎带应答。

捎带应答

我们发现,很多情况下,客户端服务器在应用层也是 "一发一收"的.意味着客户端给服务器说了 “How are you”,服务器也会给客户端回一个 “Fine,thank you”;那么这个时候 ACK就可以搭顺风车,和服务器回应的 "Fine, thank you"一起回给客户端

32位序号和32位确认序号

32位序号:在建立连接的时候,计算机会随机生成一个随机数作为初始值,当传送一次数据的时候,会累加上数据的大小。 用来解决网络中乱序的问题
32位确认序号:发送端接受到确认应答后,可以认为这个序号之前的序号全部被收到了。用来解决网络中丢包的问题

三次握手与四次挥手

TCP建立连接
在这里插入图片描述

  • 一开始的时候,客户端和服务端都是CLOSED状态,然后服务端去监听某个端口,然后处于LISTEN状态
  • 客户端就会去建立连接,然后会先初始化序号(clinet_isn),将SYN标记位置为1,然后将整个报头发送过去,之后客户端除以SYN_SENT状态
  • 服务端收到了来自客户端携带的SYN报头后,也会先初始化自己的序(server_isn)号,然后将确认应答设置为clinet_isn+1,,将TCP报头中ACK和SYN设置为1,然后将报文发送给客户端。之后状态为SYN_REVD
  • 最后客户端收到了来自服务端的数据,将TCP中ACK置为1,将确认序号设置为server_isn+1,然后将报文发送给服务端(这次可以携带数据),之后客户端状态为ESTABLISHED。

从上面的三次握手中可以看到,第二次服务端返回ACK和SYN的时候,其实就用到了捎带应答。 而且注意 前两次握手是不能发送数据的,而第三次是可以的。

四次挥手

在这里插入图片描述

  • 客户端首先会先发送携带FIN的报文给服务端,表示要断开连接。之后状态设置为FIN_WAIT_1
  • 服务端收到该报文后,就向客户端发送 ACK 应答报文,接着服务端进入 CLOSE_WAIT 状态。
  • 客户端收到服务端的 ACK 应答报文后,之后进入 FIN_WAIT_2 状态。
  • 这时,服务端可能需要处理数据。之后会发送FIN报文,之后状态为LAST_ACK
  • 客户端收到服务端的 FIN 报文后,回一个 ACK 应答报文,之后进入 TIME_WAIT 状态
  • 服务端收到了 ACK 应答报文后,就进入了 CLOSE 状态,至此服务端已经完成连接的关闭。
  • 客户端在经过 2MSL 一段时间后,自动进入 CLOSE 状态,至此客户端也完成连接的关闭。

2MSL:刚好是客户端发送数据到服务端的时间 + 服务端发送数据回到客户端的时间(这样就确保再2MSL之后,再无数据处理了)

其实你看,三次握手因为捎带应答,合并成了一次,而四次挥手中,不合并是因为,服务端可能还会发送数据给客户端。
之所以被称为四次挥手,你看图中,是不是客户端和服务端都会发送FIN和ACK来表示自己要断开连接,一来一回刚好4次。

为什么是三次握手?1次可以吗?2次可以吗?4次可以吗?

先来回答一下为什么是三次握手

  • 需要确保通信是正常的。3次刚好可以验证TCP全双工
  • 确保双方OS是健康的,且愿意通信(各自发送ACK)

再聊一聊如果TCP1次和2次握手会发生什么事

  • 我们要知道建立连接是需要消耗资源的,所以如果有人恶意的发送大量SYN报文呢,并且不想接受数据,这样看,1次和2次握手是不是很不合理呢?

4次握手可以吗?

  • 当然可以,但是没必要,因为3次握手已经是最少可靠的连接建立了,并且保证了全双工。

超时重传机制

TCP要保证所有的数据包可以达到对方,就必须要有超时重传的机制。
在这里插入图片描述

  • 主机A发送数据给主机B,但由于网络的原因,数据没有到达主机B
  • 主机A在一个特定的时间间隔(这个时间间隔在不同的内核版本中是不同的)内没有收到主机B的数据,就会重新发送(注意重新传的SYN报文是一样的)。

但是,主机 A未收到 B发来的确认应答,也可能是因为 ACK丢失了

在这里插入图片描述

因此主机 B会收到很多重复数据.那么 TCP协议需要能够识别出那些包是重复的包,并且把重复的丢弃掉.
所以就有了序号,可以做到去重的效果。

那么最后一个问题来了??
超时的时间怎么确定呢??

  • 最理想的情况下,找到一个最小的时间,保证 “确认应答一定能在这个时间内返回”.
  • 但是这个时间的长短,随着网络环境的不同,是有差异的
  • 如果超时时间设的太长,会影响整体的重传效率
  • 如果超时时间设的太短,有可能会频繁发送重复的包

所以TCP为了保证无论在任何环境下都能比较高性能的通信,因此会动态计算这个最大超时时间.

  • Linux中(BSD Unix和 Windows也是如此),超时以 500ms为一个单位进行控制,每次判定超时重发的超时时间都是500ms的整数倍.
  • 如果重发一次之后,仍然得不到应答,等待 2*500ms后再进行重传.
  • 如果仍然得不到应答,等待 4*500ms进行重传.依次类推,以指数形式递增.

重发的次数和操作系统有关。
在ubuntu20.04下是6次
在这里插入图片描述

如何理解面向字节流

在创建一个TCP的socket,内核会创建一个发送缓冲区一个接受缓冲区

  • 调用write,数据会先写入发送缓冲区中
  • 如果发送的字节流太长,会被拆分成多个TCP的数据发出
  • 如果发送的字节数太短,就会先在缓冲区里等待,等到缓冲区长度差不多了,或者等待时机发送出去
  • 接收数据的时候, 数据也是从网卡驱动程序到达内核的接收缓冲区
  • 然后应用程序可以调用 read 从接收缓冲区拿数据
  • 另一方面, TCP 的一个连接, 既有发送缓冲区, 也有接收缓冲区, 那么对于这一
    个连接, 既可以读数据, 也可以写数据. 这个概念叫做 全双工

就是由于这个缓冲区的原因,TCP的读和写不再需要一一匹配,例如

  • 写 100 个字节数据时, 可以调用一次 write 写 100 个字节, 也可以调用 100 次write, 每次写一个字节
  • 读 100 个字节数据时, 也完全不需要考虑写的时候是怎么写的, 既可以一次read 100 个字节, 也可以一次 read 一个字节, 重复 100 次

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/385771.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前后端分离项目部署,vue--nagix发布部署,.net--API发布部署。

目录 Nginx免安装部署文件包准备一、vue前端部署1、修改http.js2、npm run build 编译项目3、解压Nginx免安装,修改nginx.conf二、.net后端发布部署1、编辑appsetting.json,配置跨域请求2、配置WebApi,点击发布3、配置文件发布到那个文件夹4、配置发布相关选项5、点击保存,…

搭建自己的金融数据源和量化分析平台(三):读取深交所股票列表

深交所的股票信息读取比较简单: 看上图,爬虫读取到下载按钮的链接之后发起请求,得到XLS文件后直接解析就可以了。 这里放出深交所爬虫模块的代码: # -*- coding: utf-8 -*- # 深圳交易所爬虫 import osimport pandas as pd imp…

Python代码格式化工具库之black使用详解

概要 在软件开发过程中,代码风格和一致性对于提高代码可读性和可维护性至关重要。Python 作为一种高度可读的语言,有多种代码风格指南,但手动保持代码风格的一致性可能会非常耗时且容易出错。black 是一个 Python 代码格式化工具,旨在通过自动格式化代码,使其符合 PEP 8 …

深入浅出mediasoup—WebRtcTransport

mediasoup 提供了多种 transport,包括 WebRtcTransport、PipeTransport、DirectTransport、PlainTransport 等,用来实现不同目的和场景的媒体通信。WebRtcTransport 是 mediasoup 实现与 WebRTC 客户端进行媒体通信的对象,是 mediasoup 最重要…

Clickhouse 生产集群部署(Centos 环境)

文章目录 机器环境配置安装 JDK 8安装 zookeeperClickhouse 集群安装rpm 包离线安装修改全局配置zookeeper配置Shard和Replica设置image.png添加macros配置启动 clickhouse启动 10.82.46.135 clickhouse server启动 10.82.46.163 clickhouse server启动 10.82.46.218 clickhous…

[网络通信原理]——TCP/IP模型—网络层

网络层 网络层概述 网络层位于OSI模型的第三层,它定义网络设备的逻辑地址,也就是我们说的IP地址,能够在不同的网段之间选择最佳数据转发路径。在网络层中有许多协议,其中主要的协议是IP协议。 IP数据包格式 IP数据报是可变长度…

汽车长翅膀:GPU 是如何加速深度学习模型的训练和推理过程的?

编者按:深度学习的飞速发展离不开硬件技术的突破,而 GPU 的崛起无疑是其中最大的推力之一。但你是否曾好奇过,为何一行简单的“.to(‘cuda’)”代码就能让模型的训练速度突飞猛进?本文正是为解答这个疑问而作。 作者以独特的视角&…

如何使用代理IP进行电子邮件保护?

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 前言 随着企业信息化的深入发展,电子邮件在私人生活和商业运营中起到越来越重要的作用,随之而来电子邮件…

【编程工具使用技巧】VS如何显示行号

💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《编程工具与技巧探索》 期待您的关注 目录 引言 一、VS编译器行号显示的基本步骤 1.打开VS与项目 2.进入选项设置 3.找到并…

LeetCode 637, 67, 399

文章目录 637. 二叉树的层平均值题目链接标签思路代码 67. 二进制求和题目链接标签思路代码 399. 除法求值题目链接标签思路导入value 属性find() 方法union() 方法query() 方法 代码 637. 二叉树的层平均值 题目链接 637. 二叉树的层平均值 标签 树 深度优先搜索 广度优先…

SQL语句(以MySQL为例)——单表、多表查询

笛卡尔积(或交叉连接): 笛卡尔乘积是一个数学运算。假设我有两个集合 X 和 Y,那么 X 和 Y 的笛卡尔积就是 X 和 Y 的所有可能组合,也就是第一个对象来自于 X,第二个对象来自于 Y 的所有可能。组合的个数即为两个集合中…

开源监控 - 夜莺项目 v7 正式发版了

前言 上周五去参加了第二届 CCF夜莺开发者创新论坛,在会上,夜莺 v7 LTS 版本正式发布,另有多名嘉宾分享了自己公司的可观测性实践经验,挺有收获。 夜莺 v7 新功能 夜莺 v7 版本更多的着眼在提升用户体验,开箱即用方面…

在WPF中使用WebView2详解

Microsoft Edge WebView2 Microsoft Edge WebView2 控件允许在本机应用中嵌入 web 技术(HTML、CSS 以及 JavaScript)。 WebView2 控件使用 Microsoft Edge 作为绘制引擎,以在本机应用中显示 web 内容。 使用 WebView2 可以在本机应用的不同部分嵌入 Web 代码&…

apache2和httpd web服务器

apache2和httpd web服务器 apache2和httpd web服务器是啥apache是软件基金会apache2是一个web服务httpd和apache2是同一个东西,但是不同linux发行版中叫法不一样。就是同一个东西,但是看上去有一些不一样。 apache2和httpd web服务器是啥 apache是软件基…

AI学习记录 -使用react开发一个网页,对接chatgpt接口,附带一些英语的学习prompt

实现了如下功能(使用react实现,原创) 实现功能: 1、对接gpt35模型问答,并实现了流式传输(在java端) 2、在实际使用中,我们的问答历史会经常分享给他人,所以下图的 copy …

Hive多维分析函数——With cube、Grouping sets、With rollup

有些指标涉及【多维度】的聚合,大的汇总维度,小的明细维度,需要精细化的下钻。 grouping sets: 多维度组合,组合维度自定义;with cube: 多维度组合,程序自由组合,组合为…

日拱一卒 | JVM

文章目录 什么是JVM?JVM的组成JVM的大致工作流程JVM的内存模型 什么是JVM? 我们知道Java面试,只要你的简历上写了了解JVM,那么你就必然会被问到以下问题: 什么是JVM?简单说一下JVM的内存模型?…

大疆创新2025校招内推

大疆2025校招-内推 一、我们是谁? 大疆研发软件团队,致力于把大疆的硬件设备和大疆用户紧密连接在一起,我们的使命是“让机器有温度,让数据会说话”。 在消费和手持团队,我们的温度来自于激发用户灵感并助力用户创作…

破局产品同质化:解锁3D交互式营销新纪元!

近年来,随着数字体验经济的蓬勃发展,3D交互式营销作为一种创新手段迅速崛起,它巧妙地解决了传统产品展示中普遍存在的缺乏差异性和互动性的问题,使您的产品在激烈的市场竞争中独树一帜,脱颖而出。 若您正面临产品营销…

基于.NET开源、强大易用的短链生成及监控系统

前言 今天大姚给大家分享一个基于.NET开源(MIT License)、免费、强大易用的短链生成及监控系统:SuperShortLink。 项目介绍 SuperShortLink是一个基于.NET开源(MIT License)、免费、强大易用的短链生成及监控系统&a…