计算机毕业设计Python中华古诗词知识图谱可视化 古诗词智能问答系统 古诗词数据分析 古诗词情感分析模型 自然语言处理NLP 机器学习 深度学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

Python中华古诗词知识图谱可视化 古诗词智能问答系统

摘要

本文旨在探讨如何利用Python技术和深度学习模型构建中华古诗词知识图谱,并通过可视化技术将其展示出来。同时,本文还研究并实现了一个基于知识图谱的古诗词智能问答系统,以提供更加便捷、高效的古诗词学习和查询服务。该系统不仅能够促进中华文化的传承与发展,还能提高古诗词学习的互动性和趣味性。

关键词

Python;中华古诗词;知识图谱;可视化;智能问答系统

一、引言

中华古诗词是中华民族的文化瑰宝,蕴含着丰富的历史、文化和情感信息。然而,随着时代的变迁,大量古诗词作品被尘封于古籍之中,难以被现代人广泛阅读和欣赏。传统的阅读和教学方式已难以满足当代学习者个性化、便捷化的需求。因此,如何借助现代技术手段,尤其是Python和深度学习模型,对古诗词进行数字化处理与可视化展示,成为了一个重要的研究课题。

二、研究背景与意义

2.1 文化传承与创新

通过构建古诗词知识图谱,可以在大数据时代进一步发掘和传承古诗词中的文化价值,为古诗词的普及与传播提供新的方式和平台。

2.2 知识发现与挖掘

利用深度学习模型挖掘古诗词中的潜在信息和关联,发现新的研究视角和切入点,为古诗词的研究提供新的思路和方法。

2.3 教育普及与提升

通过可视化技术,使古诗词的学习和理解更加直观和生动,提高教育效果,降低学习成本。

2.4 技术探索与应用

探索Python和深度学习模型在文本处理、知识图谱构建及可视化方面的应用,为相关领域的研究提供新的思路和方法。

三、系统架构与模块功能

3.1 系统架构

本系统主要由系统处理模块、古诗词知识图谱模块、问答交互模块、问句解析模块和答案生成模块五大模块组成。

  1. 系统处理模块:基于Web微框架Flask构建,负责整个系统的数据流控制、I/O控制以及模块之间的交互。
  2. 古诗词知识图谱模块:利用Python网络爬虫技术从各大古诗词网站获取原始数据,通过实体抽取、关系抽取等技术构建古诗词领域的知识图谱,并将其存储于图数据库Neo4j中。
  3. 问答交互模块:用户通过前端界面输入问题,系统将其传递给问答交互模块,负责接收用户输入,并将其传递给后续的问句解析模块进行处理。
  4. 问句解析模块:对用户输入的问句进行分词处理,利用FastText意图识别与问句分类模型识别问句的意图和分类标签,采用BERT模型实现命名实体识别(NER),提取出问句中的关键实体。
  5. 答案生成模块:根据问句解析的结果,从知识图谱中检索相关信息,生成初步答案,并进行话术包装后返回给用户。

3.2 模块功能

  1. 数据获取与处理:使用Python网络爬虫技术从各大古诗词网站爬取数据,包括诗词原文、作者信息、创作背景等,并进行清洗和预处理。
  2. 知识图谱构建:利用Neo4j图数据库构建古诗词领域的知识图谱,通过定义实体和关系类型,将爬取的数据导入Neo4j中,形成结构化的知识库。
  3. 自然语言处理:采用Jieba分词工具对问句进行分词处理,提高分析速度和准确率。同时,利用FastText和BERT模型实现意图识别、问句分类和命名实体识别等任务。
  4. 前后端交互:前端采用HTML、CSS、JavaScript等技术构建用户界面,后端使用Flask框架实现与Neo4j数据库的交互,通过前后端数据的交互和传输,实现用户请求的响应和处理。

四、技术实现

4.1 数据收集与预处理

利用Python的爬虫技术从互联网或古籍数据库中收集古诗词数据,并利用jieba等分词工具进行分词处理,进行去重、标准化处理,确保数据的准确性与完整性。

4.2 知识图谱构建

基于预处理后的数据,利用Neo4j等图数据库构建古诗词的知识图谱,包括实体识别、关系抽取和图谱构建等步骤。

4.3 深度学习模型训练

利用Keras等深度学习框架训练LSTM模型,对古诗词进行主题分类、情感分析等任务。

4.4 可视化系统设计

利用D3.js等前端可视化库设计并实现古诗词知识图谱的可视化系统,展示其结构和关系。

4.5 问答系统实现

使用Rasa问答系统框架对用户提出的中文古诗词问题进行理解与解答,将匹配的最佳答案通过人机交互平台返回给用户。

五、应用案例与效果展示

5.1 案例展示

以用户输入“请问著名诗人李白诞生于哪个朝代?”为例,系统能够迅速识别出问句的意图和关键实体“李白”和“朝代”,然后从Neo4j知识图谱中检索出李白的相关信息,包括其诞生朝代“唐代”,并将检索结果以自然语言的形式返回给用户,实现精准的问答服务。

5.2 效果评估

通过对458个中文古诗词相关问题进行测试,本系统能够正确回答92%以上的问题。与传统的搜索引擎以及商用的中文问答系统在中文古诗词问答方面进行对比测试,测试结果表明,本系统在多轮对话、上下文联系方面能够做出更有效以及更准确的回答,准确率可达98%以上。

六、结论与展望

本文成功地将Python技术和深度学习模型应用于中华古诗词知识图谱的构建与可视化,并实现了一个基于知识图谱的古诗词智能问答系统。该系统不仅提高了古诗词学习的互动性和趣味性,还为用户提供了一个高效便捷的知识管理平台。未来,我们将继续优化和完善系统功能,拓展知识图谱的应用领域,为更多领域的知识问答提供智能化解决方案。同时,我们也将积极探索AI技术在文化传承和创新中的应用,为中华优秀传统文化的传承和发展贡献更多力量。

参考文献

  1. 李白, 《唐诗三百首》, 中华书局, 2007年。
  2. 王维, 《古诗词经典》, 人民文学出版社, 2011年。
  3. 王浩, 陈志军, 《知识图谱构建与应用》, 科学出版社, 2020年。
  4. 张志宏, 《Python数据分析与可视化》, 电子工业出版社, 2018年。
  5. 陈宗良, 基于知识图谱的中文古诗词问答系统研究与实现, [相关期刊或会议名称], 年份。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/503863.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海陵HLK-TX510人脸识别模块 stm32使用

一.主函数 #include "stm32f10x.h" // Device header #include "delay.h" #include "lcd.h" #include "dht11.h" #include "IOput.h" #include "usart.h" //#include "adc.h" …

apex安装

安装过程复杂曲折,网上说的很多办法,貌似成功了,实际还是没起作用。 先说成功过程,执行下面命令,安装成功(当然,前提是你要先配置好编译环境): (我的环境&a…

虹软人脸识别

虹软人脸识别 一.虹软人脸识别1. 获取APP_ID与SDK_KEY2. 获取SDK二.Spring整合1. jar包引入2. yaml配置3. 配置类4. 工具类5. api接口6. 启动加载三.前端四.相关文献一.虹软人脸识别 开发者平台 1. 获取APP_ID与SDK_KEY 2. 获取SDK 开发文档 jar包与dll文件

oracle闪回恢复数据:(闪回查询,闪回表,闪回库,回收站恢复)

oracle的闪回查询,可以查询提交在表空间的闪回数据,并可以还原所查询的数据,用于恢复短时间内的delele 或者 update 误操作,非常方便,缺点是只能恢复大概几小时内的数据。 文章目录 概要闪回查询恢复数据的主要方法包括…

【第01阶段-基础必备篇-第二部分--Python之基础】04 函数

1 定义函数 自定义函数的语法格式如下: 以英文半角冒号结尾 由于定义函数时的参数不是实际数据,会在调用函数时传递给它们实际数据,所以我们称定义函数时的参数为形式参数,简称形参:称调用函数时传递的实际数据为实际参数&#x…

Ubuntu 下载安装 kibana8.7.1

来到 Kibana 和 Es 的版本兼容性列表根据自己的 Es 版本选择合适的 Kibana 版本: https://github.com/elastic/kibana#version-compatibility-with-elasticsearch 尽量让 Kibana 的版本和 Es 的版本保持一致。 来到 Kibana 的版本发布历史页面:https:/…

【PPTist】批注、选择窗格

前言:本篇文章研究批注和选择窗格两个小功能 一、批注 批注功能就是介个小图标 点击可以为当前页的幻灯片添加批注,还能删除之前的批注 如果我们增加了登录功能,还可以在批注上显示当前的用户名和头像,不过现在是写死的。 左侧…

【docker系列】可视化Docker 管理工具——Portainer

1. 介绍 Portainer是一个可视化的Docker操作界面,提供状态显示面板、应用模板快速部署、容器镜像网络数据卷的基本操作(包括上传下载镜像,创建容器等操作)、事件日志显示、容器控制台操作、Swarm集群和服务等集中管理和操作、登录…

Chrome访问https页面显示ERR_CERT_INVALID,且无法跳过继续访问

在访问网页的时候,因为浏览器自身的安全设置问题, 对于https的网页访问会出现安全隐私的提示, 甚至无法访问对应的网站,尤其是chrome浏览器, 因此本文主要讲解如何设置chrome浏览器的设置,来解决该问题&…

《Opencv》信用卡信息识别项目

目录 一、项目介绍 二、数据材料介绍 1、模板图片(1张) 2、需要处理的信用卡图片(5张) 三、实现过程 1、导入需要用到的库 2、设置命令行参数 3、模板图像中数字的定位处理 4、信用卡图像处理 5、模板匹配 四、总结 一…

Android NDK开发实战之环境搭建篇(so库,Gemini ai)

文章流程 音视频安卓开发首先涉及到ffmpeg编译打包动态库,先了解动态库之间的cpu架构差异性。然后再搭建可运行的Android 环境。 So库适配 ⽇常开发我们经常会使⽤到第三库,涉及到底层的语⾳,视频等都需要添加so库。⽽so库的体积⼀般来说 ⾮…

机器学习笔记 - 单幅图像深度估计的最新技术

1、深度估计简述 单眼深度估计是一项计算机视觉任务,AI 模型从单个图像中预测场景的深度信息。模型估计场景中对象从一个照相机视点的距离。单目深度估计已广泛用于自动驾驶、机器人等领域。深度估计被认为是最困难的计算机视觉任务之一,因为它要求模型理解对象及其深度信息之…

.NET AI 开发人员库 --AI Dev Gallery简单示例--问答机器人

资源及介绍接上篇 nuget引用以下组件 效果展示: 内存和cpu占有: 代码如下:路径换成自己的模型路径 模型请从上篇文尾下载 internal class Program{private static CancellationTokenSource? cts;private static IChatClient? model;privat…

PostgreSQL学习笔记(二):PostgreSQL基本操作

PostgreSQL 是一个功能强大的开源关系型数据库管理系统 (RDBMS),支持标准的 SQL 语法,并扩展了许多功能强大的操作语法. 数据类型 数值类型 数据类型描述存储大小示例值SMALLINT小范围整数,范围:-32,768 到 32,7672 字节-123INTE…

Leffa 虚拟试衣论文笔记

Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation https://github.com/xuanandsix/awesome-virtual-try-on-note/tree/main/Leffa 打开链接查看详情,更多虚拟试穿论文持续更新。

06-RabbitMQ基础

目录 1.初识MQ 1.1.同步调用 1.2.异步调用 1.3.技术选型 2.RabbitMQ 2.1.安装 2.2.收发消息 2.2.1.交换机 2.2.2.队列 2.2.3.绑定关系 2.2.4.发送消息 2.3.数据隔离 2.3.1.用户管理 2.3.2.virtual host 3.SpringAMQP 3.1.导入Demo工程 3.2.快速入门 3.2.1.消…

阻抗(Impedance)、容抗(Capacitive Reactance)、感抗(Inductive Reactance)

阻抗(Impedance)、容抗(Capacitive Reactance)、感抗(Inductive Reactance) 都是交流电路中描述电流和电压之间关系的参数,但它们的含义、单位和作用不同。下面是它们的定义和区别: …

【网络协议】IPv4 地址分配 - 第二部分

前言 在第 1 部分中,我们学习了 IPv4 地址的分配方式,了解了各种类型的 IPv4 地址,并进行了基础的子网划分(Subnetting)。在第 2 部分中,我们将继续学习子网划分,并引入一些新的概念。 【网络…

Linux 正则表达式 ⑪

正则表达式 1.Linux grep 命令 Linux grep (global regular expression) 命令用于查找文件里符合条件的字符串或正则表达式。 grep 指令用于查找内容包含指定的范本样式的文件,如果发现某文件的内容符合所指定的范本样式,预设 grep 指令会把含有范本样…

二、模型训练与优化(1):构建并训练模型

目录 1. 安装 Anaconda(推荐) 步骤: 2. 创建并激活虚拟环境 步骤: 3. 安装必要的库 步骤: 4. 编写训练脚本 步骤: 5. 运行训练脚本 步骤: 总结: 在完成了准备工作的基础上…