c++中的斐波那契数列(Fibonacci Sequence)和背包问题(Knapsack Problem)

前言

hello,大家好啊,我是文宇,不是文字,是文宇哦。

斐波那契数列(Fibonacci Sequence)

斐波那契数列(Fibonacci Sequence)是一个经典的数学问题,其中每个数都是前两个数的和。在C++中,我们可以使用多种算法来计算斐波那契数列,下面我将详细介绍每个算法的实现和优缺点。

递归算法

递归算法是最直观和简单的方法来实现斐波那契数列。通过递归调用函数来计算每一个数。具体实现如下:

int fibonacci(int n) {if (n <= 1) {return n;}return fibonacci(n - 1) + fibonacci(n - 2);
}

递归算法的优点是简洁易懂,容易理解。但是它的缺点是重复计算量大,在计算较大的斐波那契数时,可能会导致性能问题。

迭代算法

 为了避免递归算法的重复计算,我们可以使用迭代算法来计算斐波那契数列。迭代算法的基本思路是从前往后依次计算每一个数,保存中间结果。具体实现如下:

int fibonacci(int n) {if (n <= 1) {return n;}int a = 0;int b = 1;int c;for (int i = 2; i <= n; i++) {c = a + b;a = b;b = c;}return c;
}

迭代算法的优点是避免了递归算法的重复计算,性能相对较好。但是它的缺点是需要编写较多的代码,可读性稍差。

数组算法

 我们还可以使用数组来保存斐波那契数列的中间结果,以进一步提高性能。具体实现如下:

int fibonacci(int n) {if (n <= 1) {return n;}int* fib = new int[n + 1];fib[0] = 0;fib[1] = 1;for (int i = 2; i <= n; i++) {fib[i] = fib[i - 1] + fib[i - 2];}int result = fib[n];delete[] fib;return result;
}

数组算法的优点是性能较好,同时代码相对简单。但是它的缺点是需要额外的内存空间来保存数组,可能导致内存泄漏。

公式算法

在斐波那契数列的研究中,我们还发现了一个通项公式来直接计算第n个斐波那契数。具体公式如下:

int fibonacci(int n) {double goldenRatio = (1 + sqrt(5)) / 2;return round(pow(goldenRatio, n) / sqrt(5));
}

公式算法的优点是计算简单快速,但是它的缺点是可能会有精度问题,同时不太容易理解。

综上所述,以上四种算法都可以用来实现斐波那契数列。具体选择哪种算法取决于实际需求和性能要求。如果不考虑性能,递归算法是最简单直观的方法;如果性能较重要,迭代算法和数组算法可以提供较好的性能;如果要求精确计算,公式算法是一个很好的选择。

背包问题(Knapsack Problem)

背包问题(Knapsack Problem)是一个经典的组合优化问题,在计算机科学领域中被广泛研究和应用。它的基本问题可以描述为,给定一个背包的容量和一系列物品的重量和价值,如何选择物品放入背包中,使得背包中物品的总价值最大。

在C++中,我们可以使用多种算法来解决背包问题,下面我将详细介绍每个算法的实现和优缺点。

  1. 0/1背包问题: 0/1背包问题是背包问题中最基本的形式,其中每个物品要么完全放入背包,要么完全不放入。我们可以使用动态规划来解决0/1背包问题。具体算法如下:
int knapsack01(vector<int>& weights, vector<int>& values, int capacity) {int n = weights.size();vector<vector<int>> dp(n + 1, vector<int>(capacity + 1, 0));for (int i = 1; i <= n; i++) {for (int j = 1; j <= capacity; j++) {if (weights[i - 1] > j) {dp[i][j] = dp[i - 1][j];} else {dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weights[i - 1]] + values[i - 1]);}}}return dp[n][capacity];
}

0/1背包问题的关键是构建一个二维的动态规划数组,利用前一个状态的结果来更新当前状态。它的优点是能够得到精确的解,但是它的缺点是时间复杂度较高,需要O(n * capacity)的时间和空间。

  1. 完全背包问题: 完全背包问题是背包问题中的一个变种,其中每个物品可以无限次地放入背包。我们同样可以使用动态规划来解决完全背包问题。具体算法如下:
int knapsackComplete(vector<int>& weights, vector<int>& values, int capacity) {int n = weights.size();vector<int> dp(capacity + 1, 0);for (int i = 0; i < n; i++) {for (int j = weights[i]; j <= capacity; j++) {dp[j] = max(dp[j], dp[j - weights[i]] + values[i]);}}return dp[capacity];
}

完全背包问题与0/1背包问题的区别在于内层循环的顺序,我们需要从小到大遍历容量,而不是从大到小。它的优点是时间复杂度相对较低,只需要O(n * capacity)的时间和O(capacity)的空间。

  1. 多重背包问题: 多重背包问题是背包问题中的另一种变种,其中每个物品有一个数量限制。我们可以使用动态规划来解决多重背包问题,类似于0/1背包问题。具体算法如下:
int knapsackMultiple(vector<int>& weights, vector<int>& values, vector<int>& quantities, int capacity) {int n = weights.size();vector<vector<int>> dp(n + 1, vector<int>(capacity + 1, 0));for (int i = 1; i <= n; i++) {for (int j = 1; j <= capacity; j++) {for (int k = 0; k <= quantities[i - 1] && k * weights[i - 1] <= j; k++) {dp[i][j] = max(dp[i][j], dp[i - 1][j - k * weights[i - 1]] + k * values[i - 1]);}}}return dp[n][capacity];
}

多重背包问题与0/1背包问题的区别在于内层循环的次数,我们需要遍历每个物品的数量限制。它的优点是能够解决具有数量限制的背包问题,但是它的缺点是时间复杂度较高,需要O(n * quantity * capacity)的时间和空间。

  1. 分数背包问题: 分数背包问题是背包问题中的一种特殊情况,其中每个物品可以被分割成任意大小的部分。我们可以使用贪心算法来解决分数背包问题,基于物品的单位价值进行排序,然后依次选择单位价值最高的物品放入背包中,直到背包没有空间为止。具体算法如下:
double knapsackFractional(vector<int>& weights, vector<int>& values, int capacity) {int n = weights.size();vector<pair<double, int>> ratios(n);for (int i = 0; i < n; i++) {ratios[i] = {static_cast<double>(values[i]) / weights[i], i};}sort(ratios.rbegin(), ratios.rend()); // 按照单位价值降序排序double result = 0.0;for (int i = 0; i < n; i++) {int index = ratios[i].second;if (weights[index] <= capacity) {result += values[index];capacity -= weights[index];} else {result += capacity * ratios[i].first;break;}}return result;
}

分数背包问题的优点是时间复杂度较低,只需要O(n * log(n))的时间和O(n)的空间,但是它的缺点是不能得到精确的解。

综上所述,以上四种算法都可以用来解决不同形式的背包问题。具体选择哪种算法取决于实际需求和性能要求。如果物品数量较少且要求精确解,可以使用0/1背包算法;如果物品数量较多或者需要更高的性能,可以使用完全背包算法;如果需要考虑物品的数量限制,可以使用多重背包算法;如果物品可以被分割成任意大小,可以使用分数背包算法。

结语

今天的算法是动态规划,脑子有点不好使了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/386199.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

问题解决|如何优雅展示层级或关联数据?

一、8种可用图表类型及配套教程 &#xff08;一&#xff09;包珠图 &#xff08;1&#xff09;功能介绍 包珠图&#xff08;Circular Packing&#xff09;&#xff0c;是一类较特殊的分类树状图&#xff0c;以气泡之间的包含关系展示层级关系&#xff0c;以气泡面积&#xf…

Spring事件机制

文章目录 一、Spring事件二、实现Spring事件1、自定义事件2、事件监听器2.1 实现ApplicationListener接口2.2 EventListener2.3 TransactionalEventListener 3、事件发布4、异步使用 三、EventBus1、事件模式2、EventBus三要素3、同步事件3.1 定义事件类3.2 定义事件监听3.3 测…

解析西门子PLC的String和WString

西门子PLC有两种字符串类型&#xff0c;String与WString String 用于存放英文数字标点符号等ASCII字符&#xff0c;每个字符占用一个字节 WString宽字符串用于存放中文、英文、数字等Unicode字符&#xff0c;每个字符占用两个字节 之前我搞过一篇解析String的 关于使用TCP-…

Kotlin 的优势:现代编程语言的卓越选择

文章目录 简洁与优雅的语法空安全特性函数式编程&#xff0c;支持高阶函数、lambdaKotlin 内联函数与 Java 的互操作性强大的类型推断协程支持lazy 委托object 单例模式区间表达式现代的开发工具支持 本文首发地址 https://h89.cn/archives/301.html 最新更新地址 https://gite…

包装类和泛型

&#x1f389;欢迎大家收看&#xff0c;请多多支持&#x1f339; &#x1f970;关注小哇&#xff0c;和我一起成长&#x1f680;个人主页&#x1f680; 包装类&#x1f319; Java中每个基本数据类型都对应了一个包装类&#xff0c; 除了int的包装类是Integer&#xff0c;char…

微信小程序开发 快速学习 这篇就够了

目录 一、配置篇 &#xff08;1&#xff09;官网链接&#xff1a; &#xff08;2&#xff09;项目分析 &#xff08;3&#xff09;调试器 &#xff08;4&#xff09;预览体验 &#xff08;5&#xff09;配置文件 &#xff08;6&#xff09;配置pages &#xff08;7&…

【开发问题记录】启动某个微服务时无法连接到seata(seata启动或配置异常)

问题记录 一、问题描述1.1 问题复现1.1.1 将Linux中的部分微服务启动1.1.2 在本地启动当时出错的服务 1.2 解决思路1.2.1 Nacos中seata相关的信息1.2.2 Linux中seata相关的信息 二、问题解决2.1 seata的配置错误2.1.1 Nacos中seata的配置问题2.1.2 命名空间问题的发现 2.2 网络…

Matlab编程资源库(10)离散傅立叶变换

一、离散傅立叶变换算法简要 给定一个N点的离散信号序列x(n)&#xff0c;其中n表示时刻&#xff0c;n 0, 1, 2, ..., N-1。 定义离散傅立叶变换的频域序列X(k)&#xff0c;其中k表示频率&#xff0c;k 0, 1, 2, ..., N-1。 通过以下公式计算每个频率对应的复数值&#xff…

生鲜云订单零售系统小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;商品分类管理&#xff0c;商品信息管理&#xff0c;订单评价管理&#xff0c;订单管理&#xff0c;系统管理 微信端账号功能包括&#xff1a;系统首页&#xff0c;商品信息&#…

[Unity] ShaderGraph实现镜头加速线/残血效果 URP

效果如下所示&#xff1a;残血状态时&#xff0c;画面会压暗角&#xff0c;并出现速度线营造紧迫感。 使用到的素材如下&#xff0c;换别的当然也可以。[这是张白色的png放射图&#xff0c;并非皇帝的新图hhh] 这个效果的实现逻辑&#xff0c;其实就是利用time向圆心做透明度的…

2024经济师考试报名『注册流程』图解!

⏰报名时间&#xff1a;8月12日—9月11日 ☑️报名注册流程 1、经济师考试报名注册网站&#xff1a;中国人事考试网. 2、点击考生登录栏目中的【新用户注册】按钮&#xff0c;进行注册。 3、进入用户注册界面&#xff0c;填写注册信息。 4、填写完毕确认无误后点击【提交】&…

Unity UGUI 之 Mask

本文仅作学习笔记与交流&#xff0c;不作任何商业用途 本文包括但不限于unity官方手册&#xff0c;唐老狮&#xff0c;麦扣教程知识&#xff0c;引用会标记&#xff0c;如有不足还请斧正 本文在发布时间选用unity 2022.3.8稳定版本&#xff0c;请注意分别 1.什么是遮罩 遮罩是一…

深度解读大语言模型中的Transformer架构

一、Transformer的诞生背景 传统的循环神经网络&#xff08;RNN&#xff09;和长短期记忆网络&#xff08;LSTM&#xff09;在处理自然语言时存在诸多局限性。RNN 由于其递归的结构&#xff0c;在处理长序列时容易出现梯度消失和梯度爆炸的问题。这导致模型难以捕捉长距离的依…

学习react-登录状态验证

1.创建三个页面LoginPage, HomePage,NotFoundPage用于Router 创建LoginPage.tsx用于做登录页面 // LoginPage.tsx const LoginPage (props:LoginProp) > {const navigate useNavigate();return( <h1 onClick{ ()>{navigate("/");}}>Hello Login, {pr…

02 Go语言操作MySQL基础教程_20240729 课程笔记

概述 如果您没有Golang的基础&#xff0c;应该学习如下前置课程。 Golang零基础入门Golang面向对象编程Go Web 基础Go语言开发REST API接口_20240728 基础不好的同学每节课的代码最好配合视频进行阅读和学习&#xff0c;如果基础比较扎实&#xff0c;则阅读本教程巩固一下相…

微信小游戏之 三消(一)

首先设定一下 单个 方块 cell 类&#xff1a; 类定义和属性 init 方法 用于初始化方块&#xff0c;接收游戏实例、数据、宽度、道具类型和位置。 onWarning 方法 设置警告精灵的帧&#xff0c;并播放闪烁动作&#xff0c;用于显示方块的警告状态。 grow 方法 根据传入的方向…

21.发布确认模式-高级

问题 生产环境中由于一些不明原因&#xff0c;导致rabbitmq重启&#xff0c;在重启的期间生产者消息投递失败&#xff0c;导致消息丢失&#xff0c;需要手动处理恢复。那么如何才能进行rabbitmq的消息可靠性投递&#xff1f;特别是在极端的情况&#xff0c;rabbitmq集群不可用…

文件操作相关的精讲

目录&#xff1a; 思维导图 一. 文件定义 二. 文件的打开和关闭 三. 文件的顺序读写操作 四. 文件的随机读写操作 五. 文本文件和二进制文件 六. 文件读取结束的判断 七.文件缓冲区 思维导图&#xff1a; 一. 文件定义 1.文件定义 C语言中&#xff0c;文件是指一组相…

Vue3可媲美Element Plus Tree组件实战之移除节点

Element Plus Tree自定义节点内容示例中介绍了移除节点的用法&#xff0c;个人觉得作为提供给用户API&#xff0c;应该遵循迪米特法则&#xff0c;把功能实现的细节封装在组件内部&#xff0c;而提供给用户最简单的操作方式&#xff0c;同时在此基础上支持用户的扩展。 因此&a…

接口测试支持IDEA插件一键同步API、新增思维导图快速评审测试用例,MeterSphere开源持续测试工具v3.1.0版本发布

2024年7月29日&#xff0c;MeterSphere开源持续测试工具正式发布v3.1.0版本。 在这一版本中&#xff0c;接口测试方面&#xff0c;支持通过IDEA插件一键同步API至MeterSphere&#xff1b;测试管理方面&#xff0c;“测试用例”模块新增通过思维导图模式快捷评审测试用例。在“…